T exp

Interrogation écrite du vendredi 26 janvier 2024

30 minutes

	Numéro :	Prénom et nom : / 20)							
	L'usage de la calculatrice n'est pas autorisé. L'utilisation du symbole d'équivalence est interdite.									
. (6 points : 2 points + 1 point + 3 points)										
u	stifier que 2024 ≡	$\equiv -1 \pmod{25}$.								
•										
Ξı	n déduire que pou	ar tout entier naturel n on a $2024^n \equiv (-1)^n \pmod{25}$.	•••							
•			•••							
•			•••							
•										
•			•••							
r	réciser suivant les	valeurs de n entier naturel le reste de la division euclidienne de 2024^n par 25.								
•			•••							
•			•••							
•			•••							

II (A points · 1°) 2 points · 2°) 2 points)										
II. (4 points : 1°) 2 points ; 2°) 2 points)										
Les deux questions sont indépendantes l'une de l'autre.										
1°) Compléter par un entier naturel la congruence suivante : −5 ≡ (mod. 7).										
2°) Compléter la phrase suivante :										
Un inverse de 5 modulo 7 est										
Justifier:										
III. (6 points : 1°) 3 points ; 2°) 3 points)										
1°) Compléter la deuxième ligne du tableau de congruences ci-dessous où <i>x</i> est un entier relatif. On écrira chaque fois le plus petit entier naturel.										
	Si $x \equiv \dots \pmod{6}$	0	1	2	3	4	5			
	Si $x \equiv \dots \pmod{6}$ Alors $x^2 \equiv \dots \pmod{6}$									
2°) On note E l'ensemble des entiers relatifs x tels que $x^2 \equiv x \pmod{6}$. À l'aide du tableau, caractériser E de manière explicite en complétant l'équivalence ci-dessous pour $x \in \mathbb{Z}$ par des relations de congruences de la forme $x \equiv \dots$ (mod. 6): $x \in E \iff \dots$										
IV. (4 points : 1°) 1 point ; 2°) 3 points)										
On pose $N = 35\ 125\ 440\ 053\ 027\ 123$.										
1°) Compléter par un entier naturel qui s'écrit avec deux chiffres en base dix la congruence suivante :										
$N \equiv \dots \pmod{4}$										
2°) En déduire le reste de la division euclidienne de N par 4. Expliquer sur les lignes en dessous.										

2°) En déduire le reste de la division euclidienne de N par 4. Expliquer sur les lignes en dessous.
....

Corrigé de l'interrogation écrite du 26-1-2024

I.

Justifier que $2024 \equiv -1 \pmod{25}$.

On applique la définition de la relation de congruence.

On calcule la différence entre 2024 et -1: 2024 -(-1) = 2025.

Or 2025 est divisible par 25 car le nombre formé par ses deux derniers chiffres est 25, qui est bien divisible par 25.

On en déduit que $2024 \equiv -1 \pmod{25}$.

En déduire que pour tout entier naturel *n* on a $2024^n \equiv (-1)^n \pmod{25}$.

On applique la propriété sur les congruences concernant les puissances d'exposant entier naturel.

Préciser suivant les valeurs de *n* entier naturel le reste de la division euclidienne de 2024ⁿ par 25.

• Si *n* est pair, alors $2024^n \equiv 1 \pmod{25}$.

Comme $0 \le 1 < 25$, on en déduit que le reste de la division euclidienne de 2024^n par 25 est égal à 1.

• Si *n* est impair, alors $2024^n \equiv -1 \pmod{.25}$.

Or $-1 \equiv 24 \pmod{25}$.

Par transitivité de la relation de congruence, on en déduit que $2024^n \equiv 24 \pmod{25}$.

Comme $0 \le 24 < 25$, on en déduit que le reste de la division euclidienne de 2024^n par 25 est égal à 24.

II.

Les deux questions sont indépendantes l'une de l'autre.

- 1°) Compléter par un entier naturel la congruence suivante : $-5 \equiv 2 \pmod{7}$.
- 2°) Compléter la phrase suivante :

Un inverse de 5 modulo 7 est 3.

Justifier: $5 \times 3 \equiv 1 \pmod{7}$.

III.

1°) Compléter la deuxième ligne du tableau de congruences ci-dessous où x est un entier relatif. On écrira chaque fois le plus petit entier naturel.

Si $x \equiv \dots \pmod{6}$	0	1	2	3	4	5
Alors $x^2 \equiv \dots \pmod{6}$		•••	•••	•••	•••	

Si $x \equiv \dots \pmod{6}$	0	1	2	3	4	5
Alors $x^2 \equiv \dots \pmod{6}$	0	1	4	3	4	1

2°) On note E l'ensemble des entiers relatifs x tels que $x^2 \equiv x \pmod{6}$.

À l'aide du tableau, caractériser E de manière explicite en complétant l'équivalence ci-dessous pour $x \in \mathbb{Z}$ par des relations de congruences de la forme $x \equiv \dots$ (mod. 6):

$$x \in E \iff x \equiv 0 \pmod{6}$$
 ou $x \equiv 1 \pmod{6}$ ou $x \equiv 3 \pmod{6}$ ou $x \equiv 4 \pmod{6}$

Tout nombre entier relatif est congru soit à 0, soit à 1, soit à 2, soit à 3, soit à 4, soit à 5 modulo 6.

Le connecteur logique qui convient est bien le « ou » et non le « et ».

IV.

On pose N = 35 125 440 053 027 123.

1°) Compléter par un entier naturel qui s'écrit avec deux chiffres en base dix la congruence suivante :

$$N \equiv 23 \pmod{4}$$

On sait qu'un entier naturel est congru modulo 4 au nombre formé par ses deux derniers chiffres modulo 4. Il s'agit d'une propriété du cours qui se retrouve aisément en écrivant $N=35\ 125\ 440\ 053\ 027\ 100+23$. On fait alors apparaître la somme d'un multiple de 4 et de 23.

2°) En déduire le reste de la division euclidienne de N par 4. Expliquer sur les lignes en dessous.

3

On réduit 23 modulo 4 : $23 \equiv 3 \pmod{4}$. On a donc $N \equiv 3 \pmod{4}$.