T exp

Interrogation écrite du mardi 14 novembre 2023

Durée: 40 minutes

- fiche

- calculatrice

Prénom et nom :

Note: / 20

I. (2 points)

Démontrer que pour tout nombre complexe z on a : $\overline{(i-2)z-3i} = 3i-(2+i)\overline{z}$.			
II. (3 points : 1°) 2 points ; 2°) 1 point)			
1°) Compléter l'égalité $\frac{1}{i} = \dots$. À l'aide de ce résultat, démontrer que pour tout entier naturel n , on a : $\frac{1}{i^n} = (-i)^n$.			

2°) Vrai ou faux ? Répondre sans justifier.

L'inverse d'un imaginaire pur non nul est un imaginaire pur non nul.

III. (6 points : 2 points + 2 points + 2 points)

Compléter les phrases suivantes donnant chaque fois les solutions de l'équation donnée d'inconnue $z \in \mathbb{C}$.

- Les solutions de l'équation $(\overline{z} + 3i) \times (iz 2) = 0$ sont
- Les solutions de l'équation $z^2 + 13 = 6z$ sont
- Les solutions de l'équation $z + \frac{1}{z} = 0$ sont

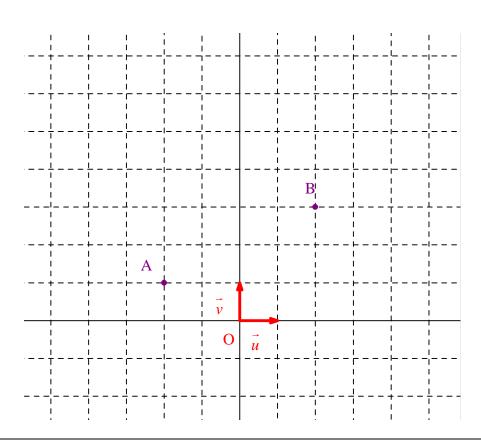
IV. (4 points : 1°) 1 point ;	2°) 1 point; 3°) 1 point + 1 point)
On considère la fonction f :	$z \mapsto z^2 + i\overline{z}$ définie sur \mathbb{C} .
On écrira les détails des calc	uls des questions 1°) et 3°) au verso de la feuille annexe.
1°) Calculer $f(i)$.	
	(une seule égalité)
un nombre complexe z et qu	le cadre ci-dessous une fonction Python d'en-tête def $f(z)$: qui prend pour argumen i renvoie l'image de z par f . llés. On écrira le plus lisiblement possible.
	def f(z):
D (1')	espondant sur la calculatrice et vérifier qu'il fonctionne.
• •	a partie imaginaire de $f(z)$ en fonction de x et de y . Écrire deux égalités.
Exprimer la partie réelle et la	a partie imaginaire de $f(z)$ en fonction de x et de y . Écrire deux égalités.
V. (2 points : 1 point + 1 po	partie imaginaire de $f(z)$ en fonction de x et de y . Écrire deux égalités. Dint point sur la feuille annexe sur lequel on a placé deux points A et B dans le plan re orthonormé direct (O, \vec{u}, \vec{v}) .
V. (2 points : 1 point + 1 po On considère le graphique de complexe P muni d'un repèr Écrire les affixes des points	partie imaginaire de $f(z)$ en fonction de x et de y . Écrire deux égalités. Dint point sur la feuille annexe sur lequel on a placé deux points A et B dans le plan re orthonormé direct (O, \vec{u}, \vec{v}) .
V. (2 points : 1 point + 1 po On considère le graphique de complexe P muni d'un repèr Écrire les affixes des points	point) onné sur la feuille annexe sur lequel on a placé deux points A et B dans le plan re orthonormé direct (O, \vec{u}, \vec{v}) . A et B.
V. (2 points : 1 point + 1 point of the complexe P muni d'un repèrécrire les affixes des points : VI. (3 points : 1°) 1 point ;	point) onné sur la feuille annexe sur lequel on a placé deux points A et B dans le plan re orthonormé direct (O, \vec{u}, \vec{v}) . A et B.
V. (2 points : 1 point + 1 point of the complexe P muni d'un repèré Écrire les affixes des points : VI. (3 points : 1°) 1 point ;	point) onné sur la feuille annexe sur lequel on a placé deux points A et B dans le plan re orthonormé direct (O, \vec{u}, \vec{v}) . A et B.
V. (2 points : 1 point + 1 point of the complexe P muni d'un repère Écrire les affixes des points : VI. (3 points : 1°) 1 point ; On considère les prédicats A 1°) Écrire la négation de A s	point) onné sur la feuille annexe sur lequel on a placé deux points A et B dans le plan re orthonormé direct (O, \vec{u}, \vec{v}) . A et B.
V. (2 points : 1 point + 1 point of the complexe P muni d'un repère Écrire les affixes des points : VI. (3 points : 1°) 1 point ; On considère les prédicats A 1°) Écrire la négation de A s	a partie imaginaire de $f(z)$ en fonction de x et de y . Écrire deux égalités. Soint) Soint onné sur la feuille annexe sur lequel on a placé deux points A et B dans le plan re orthonormé direct $\left(O, \vec{u}, \vec{v}\right)$. A et B.

Numéro	
Niimero	•
Tiumero	

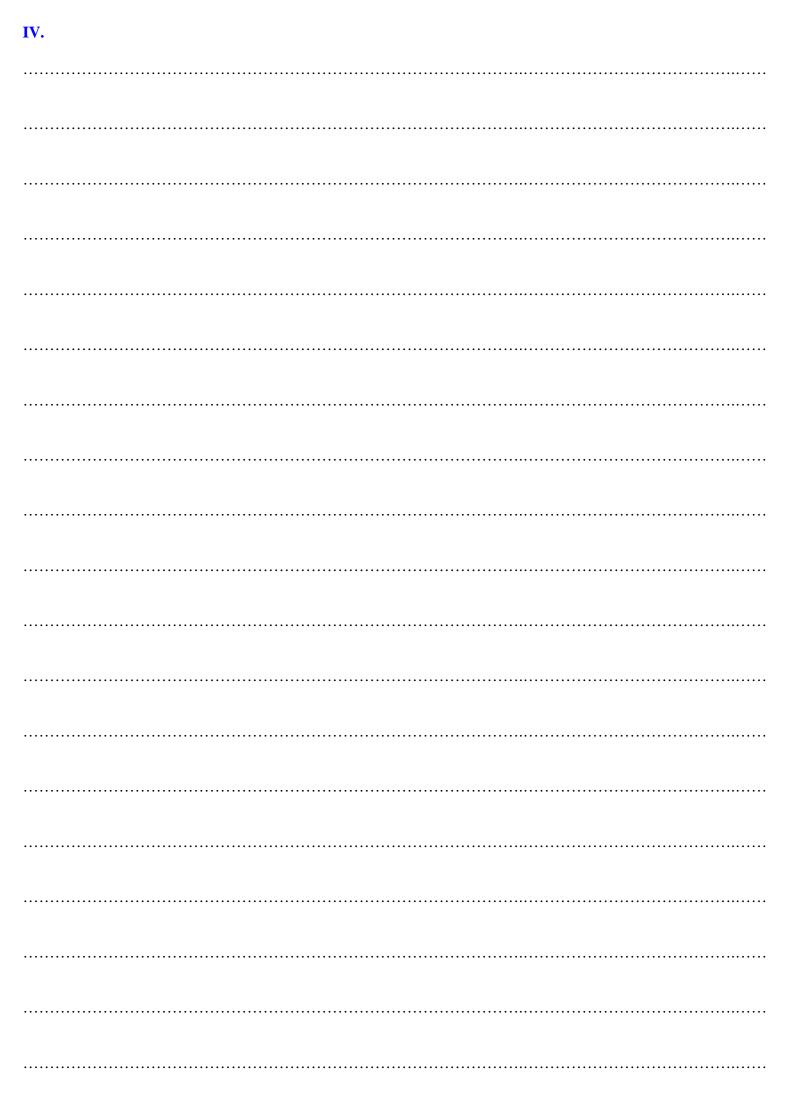
Prénom et nom :

Feuille annexe

V. Graphique



III.	
	•••••



Corrigé de l'interrogation écrite du 14-11-2023

I.

Démontrer que pour tout nombre complexe z on a : $\overline{(i-2)z-3i} = 3i-(2+i)\overline{z}$.

$$\forall z \in \mathbb{C} \quad \overline{(i-2)z-3i} = (-i-2)\overline{z}+3i$$
$$= 3i - (i+2)$$

On utilise les propriétés des conjugués.

II.

1°) Compléter l'égalité $\frac{1}{i} = -i$. À l'aide de ce résultat, démontrer que pour tout entier naturel n, on a : $\frac{1}{i^n} = (-i)^n$.

On part de l'égalité $\frac{1}{i} = -i$.

On élève les deux membres à la puissance n.

On obtient $\left(\frac{1}{i}\right)^n = \left(-i\right)^n$, ce qui donne immédiatement $\frac{1}{i^n} = \left(-i\right)^n$.

2°) Vrai ou faux ? Répondre sans justifier.

L'inverse d'un imaginaire pur non nul est un imaginaire pur non nul.

vrai

La justification est très facile.

III.

Compléter les phrases suivantes donnant chaque fois les solutions de l'équation donnée d'inconnue $z \in \mathbb{C}$.

- Les solutions de l'équation $(z+3i)\times(iz-2)=0$ sont 2i et 3i.
- Les solutions de l'équation $z^2 + 13 = 6z$ sont 3 + 2i et 3 2i.
- Les solutions de l'équation $z + \frac{1}{z} = 0$ sont i et i.

Écrire la résolution de l'une des équations au choix sur la feuille annexe.

Résolvons dans \mathbb{C} l'équation $(\overline{z} + 3i) \times (iz - 2) = 0$ (1).

Il s'agit d'une équation produit nul.

 $(1) \Leftrightarrow \overline{z} + 3i = 0$ ou iz - 2 = 0 (un produit de facteurs est nul si et seulement si l'un au moins des facteurs est nul)

$$\Leftrightarrow \overline{z} = -3i$$
 ou $z = \frac{2}{i}$

$$\Leftrightarrow z = 3i \text{ ou } z = \frac{2 \times i}{i \times i}$$

$$\Leftrightarrow z = 3i \text{ ou } z = -2i$$

Soit S_1 l'ensemble des solutions de (1).

$$S_1 = \{3i; -2i\}$$

Résolvons dans \mathbb{C} l'équation $z^2 + 13 = 6z$ (2).

(2)
$$\Leftrightarrow z^2 - 6z + 13 = 0$$

 $\Leftrightarrow z = 3 + 2i$ ou $z = 3 - 2i$ (utilisation du discriminant réduit : $\Delta' = (-3)^2 - 1 \times 13 = 9 - 13 = -4$)

Comme $\Delta' < 0$, l'équation admet 2 racines complexes distinctes conjuguées.

Soit S_2 l'ensemble des solutions de (2).

$$S_2 = \{3 + 2i; 3 - 2i\}$$

Résolvons dans \mathbb{C} l'équation $z + \frac{1}{z} = 0$ (3).

L'ensemble de résolution de (3) est \mathbb{C}^* (c'est-à-dire $\mathbb{C}\setminus\{0\}$) car 0 est « valeur interdite ».

$$(3) \Leftrightarrow \frac{z^2 + 1}{z} = 0$$

$$\Leftrightarrow z^2 + 1 = 0$$

$$\Leftrightarrow z^2 = -1$$

$$\Leftrightarrow z = i \text{ ou } z = -i$$

variante:
$$z^2 - i^2 = 0$$
 $(z - i)(z + i) = 0$

Soit S_3 l'ensemble des solutions de (3).

$$S_3 = \{i; -i\}$$

IV.

On considère la fonction $f: z \mapsto z^2 + i\overline{z}$ définie sur \mathbb{C} .

On écrira les détails des calculs des questions 1°) et 3°) au verso de la feuille annexe.

1°) Calculer f(i).

$$f(i) = 0$$
 (une seule égalité)

$$f(i) = i^{2} + i \times (-i)$$
$$= -1 + 1$$
$$= 0$$

 2°) On souhaite écrire dans le cadre ci-dessous une fonction Python d'en-tête def f(z): qui prend pour argument un nombre complexe z et qui renvoie l'image de z par f.

Compléter la ligne en pointillés. On écrira le plus lisiblement possible.

Réaliser le programme correspondant sur la calculatrice et vérifier qu'il fonctionne.

3°) On pose z = x + iy, x et y étant deux réels.

Exprimer la partie réelle et la partie imaginaire de f(z) en fonction de x et de y. Écrire deux égalités.

Re
$$f(z) = x^2 - y^2 + y$$
 Im $f(z) = 2xy + x$

$$\forall z \in \mathbb{C} \quad f(z) = (x+iy)^2 + i(x-iy)$$

$$= x^2 + 2ixy + i^2y^2 + ix - i^2y$$

$$= x^2 + 2ixy - y^2 + ix + y$$

$$= x^2 - y^2 + y + i(2xy + x)$$

On peut éventuellement factoriser Im f(z).

V.

On considère le graphique donné sur la feuille annexe sur lequel on a placé deux points A et B dans le plan complexe P muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) .

Écrire les affixes des points A et B.

$$z_A = i - 2$$
 (une seule égalité) $z_B = 2 + 3i$ (une seule égalité)

$$A(i-2) B(2+3i)$$

On répond par des égalités d'affixes $z_A = \dots$ et $z_B = \dots$.

VI.

On considère les prédicats A : « x > 0 et y > 0 » et B : « x + y > 0 » où x et y sont deux réels.

Il s'agit d'un exercice de logique mathématique.

1°) Écrire la négation de A sur les pointillés ci-contre.

non A : « $x \le 0$ ou $y \le 0$ »

 $B \Rightarrow A$

2°) Laquelle des deux implications ci-contre est vraie pour tout couple (x; y) de réels ? Entourer l'implication choisie. $(A \Rightarrow B)$

Écrire la contraposée sur les pointillés ci-contre avec les lettres x et y.

La contraposée de l'implication $A \Rightarrow B$ est l'implication non $B \Rightarrow$ non A (implication vraie).

$$x + y \leq 0 \Rightarrow (x \leq 0 \text{ ou } y \leq 0)$$