T exp

Interrogation écrite du jeudi 25 mai 2023 (30 minutes)

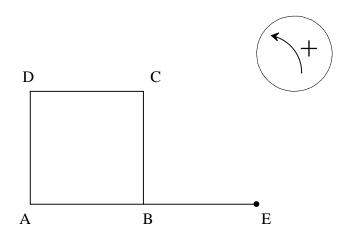
Numéro:....

Prénom et nom :

Note: / 20

I. (3 points : 1 point par réponse)

On se place dans le plan orienté et on considère un carré ABCD direct. Soit E le symétrique de A par rapport à B.



Déterminer la mesure principale en radian des angles orientés $(\overrightarrow{DA}, \overrightarrow{DB}), (\overrightarrow{BE}, \overrightarrow{BD}), (\overrightarrow{BC}, \overrightarrow{BE})$.

On rappelle que $(\overrightarrow{DA}, \overrightarrow{DB})$ désigne l'angle orienté formé par les vecteurs \overrightarrow{DA} et \overrightarrow{DB} dans cet ordre.

On rappelle qu'il s'agit de l'angle orienté formé par les demi-droites [DA) et [DB) dans cet ordre.

$\left(\overrightarrow{\mathrm{DA}},\overrightarrow{\mathrm{DB}}\right):$ $\left(\overrightarrow{\mathrm{BE}},\overrightarrow{\mathrm{BD}}\right):$ $\left(\overrightarrow{\mathrm{BC}},\overrightarrow{\mathrm{BE}}\right):$

Écrire les mesures sur les figures données sur la feuille annexe.

II. (2 points)

On pose $z = 1 - i\sqrt{3}$.

Parmi les nombres suivants, entourer tous ceux qui sont des arguments de z.

$$\frac{17\pi}{3}$$

$$\frac{5\pi}{3}$$

$$\frac{100\pi}{3}$$

$$-\frac{1007}{3}$$

$$\frac{20237}{3}$$

$$-\frac{20237}{3}$$

III. (3 points : 1 point + 1 point + 1 point)

On pose $z_1 = 3 - (2 + i)^2$, $z_2 = (i - 1)^2 (i + 1)^3$, $z_3 = 1 + i^3$.

Déterminer une écriture exponentielle de z_1 , z_2 , z_3 .

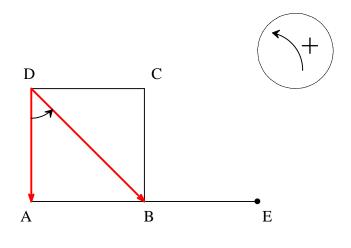
$$z_1 = \dots$$

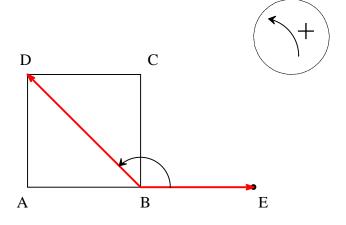
$$z_2 = \dots$$

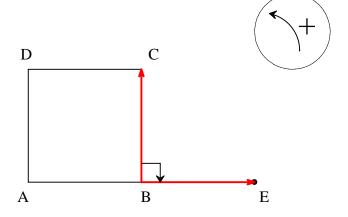
$$z_3 = \dots$$

IV. (4 points : 2 points + 2 points)
On pose $z = (1+i)^n (1-i)^p$ où n et p sont deux entiers relatifs. On détaillera la démarche pour résoudre les deux questions au verso de la feuille annexe.
Déterminer un argument de z en fonction de n et p.
En déduire une condition nécessaire et suffisante sur n et p pour que z soit un réel. $z \in \mathbb{R} \iff \dots$
Dans les exercices \mathbf{V} et \mathbf{VI} , le plan complexe P est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) . On désigne par Γ le cercle de centre O et de rayon 1 . On note également U, V, U', V' les points de P d'affixes respectives $1, i, -1, -i$.
V. (4 points : 2 points + 2 points)
On pose $P^* = P \setminus \{O\}$ et on considère l'application F de P^* dans P qui à tout point M distinct de O , d'affixe z , associe le point M' d'affixe $z' = \frac{1}{2} \left(z - \frac{1}{z} \right)$.
Soit M un point quelconque de Γ . On note θ une mesure en radian de l'angle orienté $(\vec{u}, \overrightarrow{OM})$. L'affixe de M est donc $z = e^{i\theta}$. Calculer l'affixe z' de M' en fonction de θ sous la forme la plus simple possible sans exponentielle. En déduire l'image Γ' de Γ par F .
VI. (4 points : 1°) 2 points ; 2°) 2 points)
1°) Soit M un point quelconque de P distinct de U et U'. On note z son affixe. Compléter l'égalité suivante : $(\overrightarrow{MU}, \overrightarrow{MU'}) = \arg \dots (2\pi)$
2°) On note E l'ensemble des points M de P distincts de U et U' , d'affixe z , tels que $\arg \frac{z+1}{z-1} = -\frac{\pi}{2}$ (2π). Déterminer et tracer l'ensemble E sur le graphique donné sur la feuille annexe.

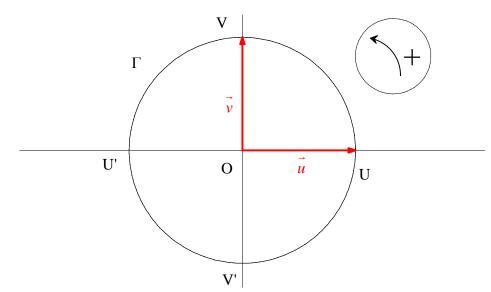
I.

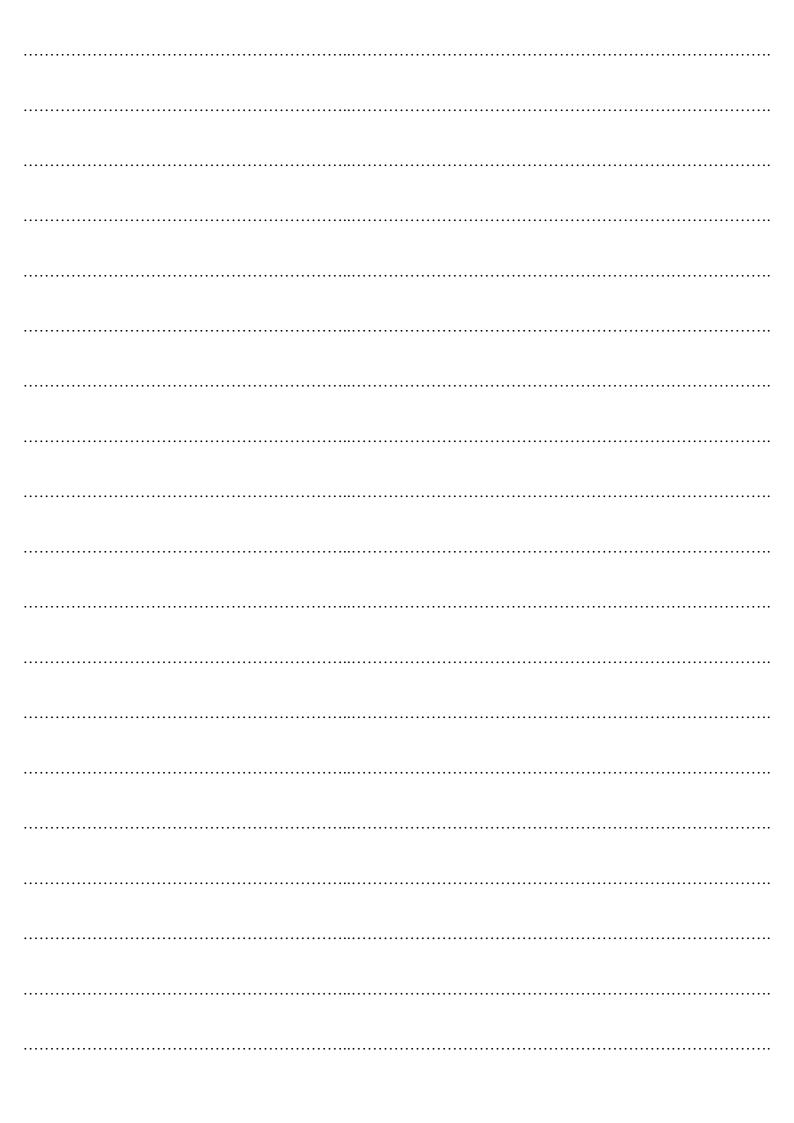






VI. 2°)

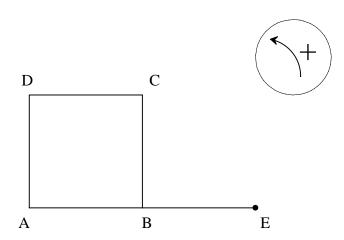




Corrigé de l'interrogation écrite du 25-5-2023

I.

On se place dans le plan orienté et on considère un carré ABCD direct. Soit E le symétrique de A par rapport à B.



Déterminer la mesure principale en radian des angles orientés $\left(\overrightarrow{DA}, \overrightarrow{DB}\right)$, $\left(\overrightarrow{BE}, \overrightarrow{BD}\right)$, $\left(\overrightarrow{BC}, \overrightarrow{BE}\right)$. On rappelle que $\left(\overrightarrow{DA}, \overrightarrow{DB}\right)$ désigne l'angle orienté formé par les vecteurs \overrightarrow{DA} et \overrightarrow{DB} dans cet ordre. On rappelle qu'il s'agit de l'angle orienté formé par les demi-droites $\left(\overrightarrow{DA}\right)$ et $\left(\overrightarrow{DB}\right)$ dans cet ordre.

$(\overrightarrow{\mathrm{DA}}, \overrightarrow{\mathrm{DB}}) : \frac{\pi}{4}$	$(\overrightarrow{BE}, \overrightarrow{BD}) : \frac{3\pi}{4}$	$(\overrightarrow{\mathrm{BC}}, \overrightarrow{\mathrm{BE}}) : -\frac{\pi}{2}$
--	---	---

Écrire les mesures sur les figures données sur la feuille annexe.

La mesure principale en radian d'un angle orienté de vecteurs non nuls est la mesure qui appartient à l'intervalle $[-\pi;\pi]$.

• L'angle géométrique \widehat{ADB} mesure $\frac{\pi}{4}$ rad (45° mais il est inutile de repasser par le degré) car ABCD est un carré et [BD] est une diagonale.

On peut utilise ensuite l'orientation du plan pour dire que $\frac{\pi}{4}$ est la mesure principale en radian de l'angle orienté $(\overrightarrow{DA}, \overrightarrow{DB})$.

• L'angle géométrique \widehat{EBD} mesure $\frac{3\pi}{4}$ rad. (135° mais il est inutile de repasser par le degré)

On peut utilise ensuite l'orientation du plan pour dire que $\frac{3\pi}{4}$ est la mesure principale en radian de l'angle orienté $(\overrightarrow{BE}, \overrightarrow{BD})$.

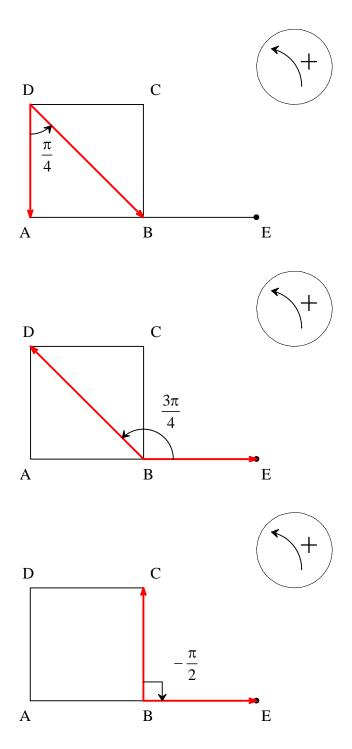
Pour déterminer une mesure en radian de l'angle orienté $(\overrightarrow{BE}, \overrightarrow{BD})$, on peut éventuellement utiliser la relation de Chasles pour les angles orientés $((\overrightarrow{u}, \overrightarrow{v}) + (\overrightarrow{v}, \overrightarrow{w}) = (\overrightarrow{u}, \overrightarrow{w})$ pour tout triplet $(\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w})$ de vecteurs non nuls).

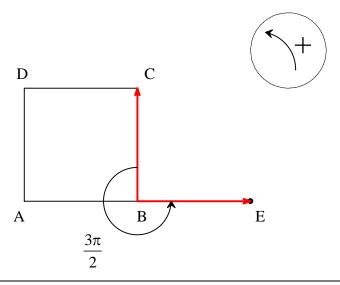
$$(\overrightarrow{BE}, \overrightarrow{BD}) = (\overrightarrow{BE}, \overrightarrow{BC}) + (\overrightarrow{BC}, \overrightarrow{BD})$$

$$(\overrightarrow{BE}, \overrightarrow{BD}) = \frac{\pi}{2} + \frac{\pi}{4}$$

$$\left(\overrightarrow{BE}, \overrightarrow{BD}\right) = \frac{3\pi}{4}$$

- ullet L'angle orienté $\left(\overrightarrow{BC},\overrightarrow{BE}\right)$ est un angle droit indirect.
- $-\frac{\pi}{2}$ est la mesure principale en radian de l'angle orienté $(\overrightarrow{BC}, \overrightarrow{BE})$.
- $\frac{3\pi}{2}$ est aussi une mesure en radian de l'angle orienté $(\overrightarrow{BC}, \overrightarrow{BE})$ mais ce n'est pas la mesure principale.





II.

On pose $z = 1 - i\sqrt{3}$.

Parmi les nombres suivants, entourer tous ceux qui sont des arguments de z.

$$\left(\frac{17\pi}{3}\right)$$

$$\left(\frac{5\pi}{3}\right)$$

$$\frac{100\pi}{3}$$

$$-\frac{100}{3}$$

$$\frac{2023\pi}{3}$$

$$\left(-\frac{2023\pi}{3}\right)$$

On commence par déterminer un argument de z. Pour cela, on l'écrit sous forme trigonométrique.

On peut factoriser dès le début par 2 (valeur du module de z que l'on peut éventuellement préalablement calculer). Il s'agit d'une factorisation forcée.

$$z = 2\left(\frac{1}{2} - i\frac{\sqrt{3}}{2}\right)$$

$$=2\left[\cos\left(-\frac{\pi}{3}\right)+i\sin\left(-\frac{\pi}{3}\right)\right]$$

[= $2e^{-i\frac{\pi}{3}}$ ligne facultative]

L'écriture trigonométrique de z ainsi obtenue montre que $-\frac{\pi}{3}$ est un argument de z.

On peut écrire arg $z = -\frac{\pi}{3}$ (2 π).

Les arguments de z sont donc tous les réels de la forme $-\frac{\pi}{3} + 2k\pi$ avec $k \in \mathbb{Z}$.

Autre réponse possible :

Les arguments de z sont tous les réels de la forme $\frac{(6k-1)\pi}{3}$ avec $k \in \mathbb{Z}$.

On regarde donc parmi les nombres proposés lesquels sont de la forme $-\frac{\pi}{3} + 2k\pi$ avec $k \in \mathbb{Z}$.

Une méthode consiste à prendre chaque réel proposé, à calculer la différence avec $-\frac{\pi}{3}$ et à regarder si cette différence peut s'écrire sous la forme $2k\pi$ avec $k \in \mathbb{Z}$.

$$\frac{17\pi}{3} - \left(-\frac{\pi}{3}\right) = \frac{18\pi}{3} = 6\pi$$

$$\frac{5\pi}{3} - \left(-\frac{\pi}{3}\right) = \frac{6\pi}{3} = 2\pi$$

$$\frac{100\pi}{3} - \left(-\frac{\pi}{3}\right) = \frac{101\pi}{3}$$

101 n'est pas divisible par 3.

 $\frac{101\pi}{3}$ ne peut donc pas s'écrire sous la forme $2k\pi$ avec $k \in \mathbb{Z}$.

$$-\frac{100\pi}{3} - \left(-\frac{\pi}{3}\right) = -\frac{99\pi}{3} = -33\pi$$

$$\frac{2023\pi}{3} - \left(-\frac{\pi}{3}\right) = \frac{2024\pi}{3}$$

2024 n'est pas divisible par 3.

 $\frac{2024\pi}{3}$ ne peut donc pas s'écrire sous la forme $2k\pi$ avec $k \in \mathbb{Z}$.

$$-\frac{2023\pi}{3} - \left(-\frac{\pi}{3}\right) = -\frac{2022\pi}{3} = -674\pi$$

III.

On pose $z_1 = 3 - (2 + i)^2$, $z_2 = (i - 1)^2 (i + 1)^3$, $z_3 = 1 + i^3$.

Déterminer une écriture exponentielle de z_1 , z_2 , z_3 .

$$z_1 = 4e^{-i\frac{\pi}{2}}$$
 $z_2 = 4\sqrt{2}e^{i\frac{\pi}{4}}$ $z_3 = \sqrt{2}e^{-i\frac{\pi}{4}}$

On commence par écrire z_1 , z_2 , z_3 sous forme algébrique.

$$z_1 = -4i$$

$$z_{2} = (i-1)^{2} (i+1)^{2} \times (i+1)$$

$$= \left[(i-1)(i+1) \right]^{2} \times (i+1) \quad \text{(astuce de calcul)}$$

$$= (-2)^{2} \times (i+1)$$

$$= 4(i+1)$$

$$= 4(1+i)$$

$$z_3 = 1 - \mathbf{i}$$

On peut vérifier les résultats grâce à la calculatrice.

$$z_1 = -4i$$
$$= 4 \times (-i)$$

 $=4\left[\cos\left(-\frac{\pi}{2}\right)+i\sin\left(-\frac{\pi}{2}\right)\right] \quad \text{(l'écriture trigonométrique de - i est presque un résultat de cours ; elle peut s'obtenir géométriquement)}$

$$=4e^{-i\frac{\pi}{2}}$$

$$z_2 = 4(1+i)$$

$$= 4\sqrt{2} \left(\frac{1}{\sqrt{2}} + i \times \frac{1}{\sqrt{2}} \right)$$

$$= 4\sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right)$$

$$= 4\sqrt{2}e^{i\frac{\pi}{4}}$$

$$z_3 = 1 - i$$

$$=\sqrt{2}\left(\frac{1}{\sqrt{2}}-i\times\frac{1}{\sqrt{2}}\right)$$

$$=\sqrt{2}\left[\cos\left(-\frac{\pi}{4}\right)+i\sin\left(-\frac{\pi}{4}\right)\right]$$

$$=\sqrt{2}e^{-i\frac{\pi}{4}}$$

IV.

On pose $z = (1+i)^n (1-i)^p$ où n et p sont deux entiers relatifs.

On détaillera la démarche pour résoudre les deux questions au verso de la feuille annexe.

Déterminer un argument de z en fonction de n et p.

$$\arg z = (n-p) \times \frac{\pi}{4}$$

En déduire une condition nécessaire et suffisante sur n et p pour que z soit un réel.

 $z \in \mathbb{R} \iff n - p$ divisible par 4

$$\arg z = \arg \left[\left(1 + i \right)^n \left(1 - i \right)^p \right]$$

$$\arg z = \arg \left[\left(1 + i \right)^n \right] + \arg \left[\left(1 - i \right)^p \right]$$

$$\arg z = n \arg (1+i) + p \arg (1-i)$$

 $\arg z = n \times \frac{\pi}{4} + p \times \left(-\frac{\pi}{4}\right)$ (on utilise les formes exponentielles de 1+i et de 1-i déterminées dans l'exercice **III**)

$$\arg z = \frac{n\pi}{4} - \frac{p\pi}{4}$$

$$\arg z = \frac{(n-p)\pi}{\Delta}$$

 2^{e} méthode : On écrit z sous forme exponentielle.

$$z = \left(\sqrt{2} e^{i\frac{\pi}{4}}\right)^n \left(\sqrt{2} e^{-i\frac{\pi}{4}}\right)^p$$

$$= \left(\sqrt{2}\right)^n e^{i\frac{n\pi}{4}} \left(\sqrt{2}\right)^p e^{-i\frac{p\pi}{4}}$$

$$= \left(\sqrt{2}\right)^{n+p} e^{i\frac{(n-p)\pi}{4}}$$

z est un nombre complexe non nul.

On utilise la caractérisation des nombres réels (non nuls) à l'aide des arguments.

$$z \in \mathbb{R} \iff \arg z = 0 \pmod{\pi}$$

$$\iff \frac{(n-p)\pi}{4} = k\pi \pmod{k \in \mathbb{Z}}$$

$$\iff n-p = 4k \pmod{k \in \mathbb{Z}}$$

 $\Leftrightarrow n-p$ divisible par 4

Dans les exercices \mathbf{V} et \mathbf{VI} , le plan complexe P est muni d'un repère orthonormé direct $(\mathbf{O}, \vec{u}, \vec{v})$.

On désigne par Γ le cercle de centre O et de rayon 1.

On note également U, V, U', V' les points de P d'affixes respectives 1, i, -1, -i.

V.

On pose $P^* = P \setminus \{O\}$ et on considère l'application F de P^* dans P qui à tout point M distinct de O, d'affixe z, associe le point M' d'affixe $z' = \frac{1}{2} \left(z - \frac{1}{z} \right)$.

Soit M un point quelconque de Γ . On note θ une mesure en radian de l'angle orienté $(\vec{u}, \overrightarrow{OM})$.

L'affixe de M est donc $z = e^{i\theta}$.

Calculer l'affixe z' de M' en fonction de θ sous la forme la plus simple possible sans exponentielle. En déduire l'image Γ' de Γ par F.

$$z' = \frac{1}{2} \left(e^{i\theta} - \frac{1}{e^{i\theta}} \right)$$

$$= \frac{1}{2} \left(e^{i\theta} - e^{-i\theta} \right)$$

$$= \frac{1}{2} \left(2i\sin\theta \right) \text{ (formule d'Euler)}$$

$$= i\sin\theta$$

On sait que $\forall x \in \mathbb{R} -1 \leq \sin x \leq 1$.

L'égalité $z' = i \sin \theta$ permet d'affirmer que Γ' est le segment [VV'].

Rappel : Par définition, Γ' est l'ensemble des points M' lorsque le point M décrit Γ .

On pourrait tracer Γ' sur un graphique.

VI.

1°) Soit M un point quelconque de P distinct de U et U'. On note z son affixe.

Compléter l'égalité suivante : $(\overrightarrow{MU}, \overrightarrow{MU'}) = \arg \dots (2\pi)$

$$(\overrightarrow{MU}, \overrightarrow{MU'}) = \arg \frac{-1-z}{1-z} (2\pi)$$

$$(\overrightarrow{MU}, \overrightarrow{MU'}) = \arg \frac{z+1}{z-1} (2\pi)$$

On peut noter que $(\overrightarrow{MU}, \overrightarrow{MU'}) = (\overrightarrow{UM}, \overrightarrow{U'M})$ (2π) d'après la propriété sur l'angle orienté formé par les opposés de deux vecteurs $((-\overrightarrow{u}, -\overrightarrow{v}) = (\overrightarrow{u}, \overrightarrow{v})$ pour tout couple $(\overrightarrow{u}, \overrightarrow{v})$ de vecteurs non nuls).

2°) On note E l'ensemble des points M de P distincts de U et U', d'affixe z, tels que $\arg \frac{z+1}{z-1} = -\frac{\pi}{2}$ (2π). Déterminer et tracer l'ensemble E sur le graphique donné sur la feuille annexe.

Soit M un point de P d'affixe z distinct de U et U' (donc $z \neq 1$ et $z \neq -1$).

$$M \in E \iff \arg \frac{z+1}{z-1} = -\frac{\pi}{2} (2\pi)$$

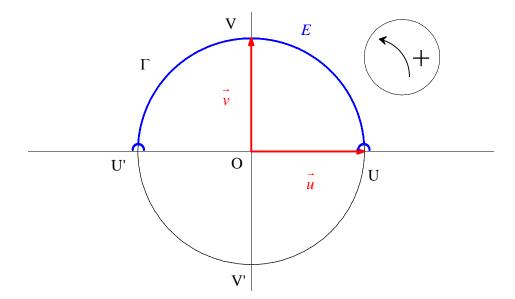
$$\Leftrightarrow \left(\overrightarrow{MU}, \overrightarrow{MU'}\right) = -\frac{\pi}{2} \left(2\pi\right)$$

On reconnaît un ensemble de référence en lien avec la propriété de l'angle droit inscrit dans un cercle.

On peut répondre de deux manières :

E est le demi-cercle de diamètre [UU'] contenant le point V, privé des points U et U'.

E est le demi-cercle de diamètre $\left[UU' \right]$ situé au-dessus de l'axe des réels, privé des points U et U'.



On peut éventuellement placer des points M_1 , M_2 , M_3 ... sur ce demi-cercle pour voir que les angles orientés $\left(\overline{M_1U},\overline{M_1V}\right)$, $\left(\overline{M_2U},\overline{M_2V}\right)\left(\overline{M_3U},\overline{M_3V}\right)$... ont tous pour mesure $-\frac{\pi}{2}$ radian.

