ı		_	
Δ.	v	7	n

Interrogation écrite du jeudi 17 novembre 2022 (30 minutes)

fichecalculatrice

	Numéro :	Prénom et nom :	Note: / 20		
I. (3 points) On note E l'ensemble des carrés parfaits et F l'ensemble des cubes parfaits. Donner trois entiers naturels appartenant à $E \cap F$.					
		(nombres séparés par des virgule	s)		
Goit ABCD un rectangle du plan dont l'aire est de 100 cm² et dont le format est supérieur ou égal à 6. Déterminer toutes les dimensions possibles de ABCD en cm sachant que ce sont des entiers naturels. On donnera les résultats sous la forme de couples (longueur; largeur).					
_	I. (3 points)				
Résoudre l'équation $(\overline{z})^2 = i\overline{z}$ (1) d'inconnue $z \in \mathbb{C}$. On attend une résolution directe sans poser $z = x + iy$ avec x et y réels.					
•					
•					
•					
•					
•					
•					

IV. (6 points : 1°) 2 points ; 2°) 2 points ; 3°) 2 points) On considère la suite complexe (z_n) définie sur $\mathbb N$ par la donnée de son premier terme $z_0 = u$ où u est un nombre complexe fixé et par la relation de récurrence $z_{n+1} = z_n^2 + 4$ pour tout entier naturel n. 1°) Déterminer le(s) nombre(s) complexe(s) u tel(s) que $z_1 = 1$ (répondre sans égalités) 2°) Déterminer le(s) nombre(s) complexe(s) u tel(s) que $z_2 = 13$ (répondre sans égalités) 3°) Dans cette question, on prend u = 1 + i. On considère la fonction Python terme (n) dans l'encadré ci-dessous qui renvoie la valeur de z_n pour tout entier naturel $n \ge 1$. def terme(n): z = 1 + 1jfor k in range(1, n+1): Z=..... return z Compléter l'instruction manquante (ligne Z=.....). V. (5 points : 1°) 3 points avec 1 point pour le résultat + 2 points pour la démarche et la présentation des calculs; 2°) 2 points) Le plan complexe P est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) . On note A le point d'affixe 1-2i. 1°) Calculer l'affixe du point B de P tel que $\overrightarrow{AB} = \overrightarrow{u} - 2\overrightarrow{v}$ (1). Vérifier sur un graphique au brouillon. 2°) Calculer l'affixe du milieu I de [AB]. Pour les deux questions, on répondra en effectuant des calculs avec les affixes, sans repasser par les coordonnées, et en faisant attention aux notations.

Corrigé de l'interrogation écrite du 17-11-2022

I.

On note E l'ensemble des carrés parfaits et F l'ensemble des cubes parfaits. Donner trois entiers naturels appartenant à $E \cap F$.

0; 1; 64 (nombres séparés par des virgules)

En effet,
$$0 = 0^2 = 0^3$$
, $1 = 1^2 = 1^3$, $64 = 8^2 = 4^3$.

On a donné les trois plus petits éléments de $E \cap F$.

On peut aussi donner les résultats 729, 4096...

Il suffit de prendre des entiers naturels à la puissance 6.

II.

Soit ABCD un rectangle du plan dont l'aire est de 100 cm² et dont le format est supérieur ou égal à 6. Déterminer toutes les dimensions possibles de ABCD en cm sachant que ce sont des entiers naturels. On donnera les résultats sous la forme de couples (longueur; largeur).

On peut faire une figure.

Le format d'un rectangle de longueur L et de largeur | est le quotient $r = \frac{L}{l}$.

On cherche tous les couples (L; I) d'entiers naturels tels que $L \times I = 100$ et $\frac{L}{I} \ge 6$.

On a
$$\frac{100}{1} \ge 6$$
, $\frac{50}{2} \ge 6$, $\frac{25}{4} \ge 6$.

Ш.

Résoudre l'équation $(\overline{z})^2 = \overline{iz}$ (1) d'inconnue $z \in \mathbb{C}$.

On attend une résolution directe sans poser z = x + iy avec x et y réels.

Résolvons dans \mathbb{C} l'équation $\overline{z}^2 = i\overline{z}$ (1).

$$(1) \Leftrightarrow \overline{z}^2 - i\overline{z} = 0$$

$$\Leftrightarrow \overline{z}(\overline{z}-i)=0$$

$$\Leftrightarrow \overline{z} = 0$$
 ou $\overline{z} - i = 0$ (équation produit-nul)

$$\Leftrightarrow z = 0 \text{ ou } \overline{z} = i$$

$$\Leftrightarrow z = 0$$
 ou $z = -i$

Soit S l'ensemble des solutions de (1).

On a
$$S = \{0; -i\}$$
.

On peut aussi prendre tout de suite le conjugué des deux membres de (1).

On obtient $z^2 = iz$ puis on résout normalement.

IV.

On considère la suite complexe (z_n) définie sur \mathbb{N} par la donnée de son premier terme $z_0 = u$ où u est un nombre complexe fixé et par la relation de récurrence $z_{n+1} = z_n^2 + 4$ pour tout entier naturel n.

1°) Déterminer le(s) nombre(s) complexe(s) u tel(s) que $z_1 = 1$. $i\sqrt{3}$; $-i\sqrt{3}$ (répondre sans égalités)

On a $z_1 = u^2 + 4$.

On cherche les nombres complexes u tels que $z_1 = 1$ soit $u^2 + 4 = 1$ (1).

(1)
$$\Leftrightarrow u^2 = -3$$

 $\Leftrightarrow u = i\sqrt{3} \text{ ou } u = -i\sqrt{3}$

On se réfère à la résolution des équations du type $z^2 = a$ où a est un réel.

2°) Déterminer le(s) nombre(s) complexe(s) u tel(s) que $z_2 = 13$. $i : -i : i\sqrt{7} : -i\sqrt{3}$ (répondre sans égalités)

On cherche les nombres complexes u tels que $z_2 = 13$ (1).

On a
$$z_2 = z_1^2 + 4 = (u^2 + 4)^2 + 4$$
.

On cherche donc les nombres complexes u tels que $(u^2 + 4)^2 + 4 = 13$ (2).

$$(2) \Leftrightarrow (u^2 + 4)^2 = 9$$

$$\Leftrightarrow u^2 + 4 = 3 \text{ ou } u^2 + 4 = -3$$

$$\Leftrightarrow u^2 = -1 \text{ ou } u^2 = -7$$

$$\Leftrightarrow u = i \text{ ou } u = -i \text{ ou } u = i\sqrt{3} \text{ ou } u = -i\sqrt{3}$$

On peut aussi procéder en deux étapes, en remontant.

On cherche d'abord les valeurs de z_1 possibles. On en déduit les valeurs de u possibles.

3°) Dans cette question, on prend u = 1 + i.

On considère la fonction Python terme(n) dans l'encadré ci-dessous qui renvoie la valeur de z_n pour tout entier naturel $n \ge 1$.

```
def terme(n):
    z=1+1j
    for k in range(1, n+1):
        z=z**2+4
    return z
```

Compléter l'instruction manquante (ligne z=.....).

On peut écrire l'instruction manquante sous la forme Z=Z*Z+4 ou Z=Z**2+4.

La variable de boucle est notée k et pas i pour ne pas engendrer de confusion avec i des nombres complexes.

On ne peut pas aller très loin dans le calcul des termes à cause du dépassement de capacité.

À partir du terme d'indice 2, la calculatrice donne des résultats avec des décimales erronées.

Pour terme(2), on obtient l'affichage : (16,000000000001+16,000000000001j)

Pour terme(3), on obtient l'affichage : (4, 0000000000145+145, 000000000005j)

V.

Le plan complexe P est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) .

On note A le point d'affixe 1-2i.

- 1°) Calculer l'affixe du point B de P tel que $\overrightarrow{AB} = \overrightarrow{u} 2\overrightarrow{v}$ (1). Vérifier sur un graphique au brouillon.
- 2°) Calculer l'affixe du milieu I de [AB].

Pour les deux questions, on répondra en effectuant des calculs avec les affixes, sans repasser par les coordonnées, et en faisant attention aux notations.

Le vecteur $\vec{u} - 2\vec{v}$ a pour affixe 1 - 2i.

$$(1) \Leftrightarrow z_{\rm B} - z_{\rm A} = 1 - 2i$$

$$\Leftrightarrow z_{\rm B} = 1 - 2i + 1 - 2i$$

$$\Leftrightarrow z_{\rm B} = 2 - 4i$$

On peut vérifier le résultat sur un graphique en effectuant la construction vectorielle.

On trace un représentant du vecteur $\vec{u} - 2\vec{v}$ d'origine A, ce qui permet d'obtenir le point B et de lire ses coordonnées

2°)

On utilise directement la formule donnant l'affixe du milieu d'un segment.

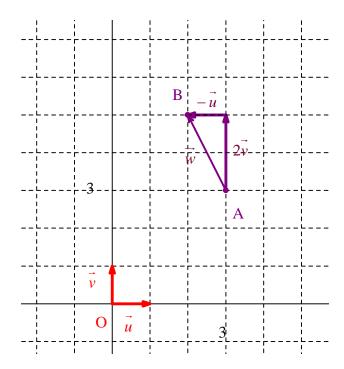
$$z_{\rm I} = \frac{z_{\rm A} + z_{\rm B}}{2}$$

$$=\frac{1-2\mathrm{i}+2-4\mathrm{i}}{2}$$

$$=\frac{3-6i}{2}$$

$$=\frac{3}{2}-3i$$

On vérifie sur un graphique.



On peut aussi tracer un représentant de \overrightarrow{w} d'origine O (origine du repère).