T spécialité

Interrogation écrite du vendredi 7 octobre 2022

30 minutes

	speciali		aa vo					
	Numéro :	Prénom	et nom :				Not	e: / 20
I.	(2 points)							
	ans le plan muni c aramétriques suiva		$\in (0, \vec{i}, \vec{j}), \text{ on co}$	onsidère les dro	oites D et D'	qui admette	nt les sys	stèmes d'équations
	D	$\begin{cases} x = 2 - t \\ y = 2t \end{cases}$	$(t \in \mathbb{R})$			$D' \begin{cases} x = 1 + \\ y = 2 - \end{cases}$	$2t$ $4t$ $t \in$	$\mathbb{R}).$
D	onner sans justifie	er les coord	données d'un vec	teur directeur	\vec{u} de D .			
D	onner sans justific	er les coord	données d'un vec	teur directeur	\vec{v} de D '.			
L	es droites D et D'	sont-elles	s parallèles ? Just	ifier.				
	• • • • • • • • • • • • • • • • • • • •					• • • • • • • • • • • • • • • • • • • •		
II	. (3 points : 1°) 2	points; 2	2°) 1 point)					
1°	C) Compléter :	,	$e^x \xrightarrow[x \to +\infty]{} \dots$		$e^x - e^x$	→ .		
О	n note $ {\cal C}$ la courbe	e représent	ative de la foncti	on exponentie	lle dans le pla	n muni d'un	repère c	orthogonal (O, \vec{i}, \vec{j}) .
- 1	ur la feuille annex faire le tableau de tracer la courbe	variations				;		, , ,
L	a fonction expone	ntielle est-	elle minorée sur	$\mathbb R$? majorée si	ur $\mathbb R$? bornée	sur \mathbb{R} ?		
	e) On considère l'o	-			st un réel don	né.		
••								

III. (5 1	points : :	1°) 1	point:	.2°)3	3 points :	: 3 °)	1 point

On considère la fonction $f: x \mapsto xe^x$ définie sur \mathbb{R} .

1°) Calculer la dérivée de f. On donnera le résultat sous forme factorisée.

 $\forall x \in \mathbb{R}$

2°) En déduire la dérivée des fonctions $f_1: x \mapsto 2xe^x$, $f_2: x \mapsto \frac{xe^x}{2}$, $f_3: x \mapsto 4-3xe^x$ (forme factorisée).

.....

- 3°) La fonction f est-elle une solution de l'équation différentielle $y'-y=e^x$?
- □ oui
- □ non

IV. (3 points)

On considère les fonctions $f: x \mapsto e^{2x} - e^x$ et $F: x \mapsto \frac{\left(e^x - 1\right)^2}{2}$ définies sur \mathbb{R} .

Démontrer que F est une primitive de f sur \mathbb{R} .

.....

.....

V. (6 points : 1°) 2 points ; 2°) 2 points ; 3°) 2 points)

1°) Choisir la (ou les) réponses possibles.

Pour tout réel x, $e^{2x} + e^{4x}$ est égal à :

A.
$$e^{6x}$$

B.
$$e^{2x}(1+e^2)$$

C.
$$e^{3x} (e^x + e^{-x})$$

D.
$$e^{8x^2}$$

E.
$$e^{2x} (e^{2x} + 1)$$

2°) La solution de l'équation $\frac{\left(e^{2x}\right)^2}{e^x} + \frac{e^x}{e^{-2x}} = 4 \text{ est } \dots$

Rédiger entièrement la résolution au verso de la feuille annexe.

3°) Une primitive de la fonction $f: x \mapsto 2 - e^x$ est la fonction $F: x \mapsto \dots$

VI. (1 point)

On considère une fonction f définie et dérivable sur \mathbb{R} . On note g la fonction définie sur \mathbb{R} par g(x) = f(2x).

Calculer la dérivée g en fonction de la dérivée de f.

$$\forall x \in \mathbb{R}$$

$$g'(x) = \dots$$

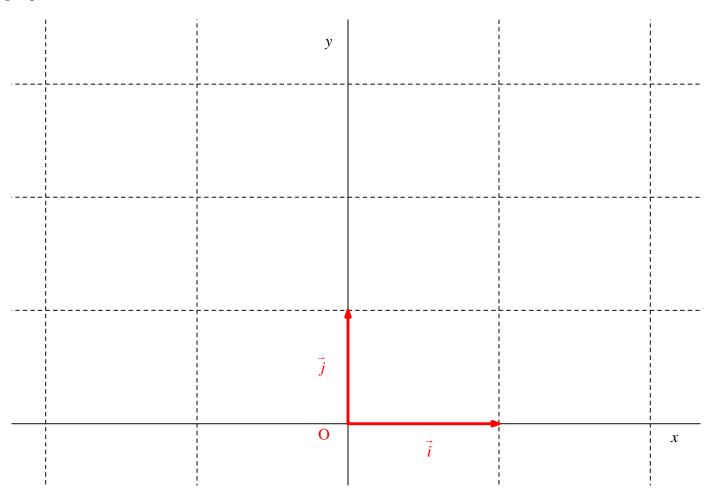
Numéro :	Prénom et nom :
----------	-----------------

Annexe de l'interrogation écrite du vendredi 7 octobre 2022

II.

Tableau de variations:

Graphique:



Corrigé de l'interrogation écrite du 7-10-2022

I.

Dans le plan muni d'un repère (O, \vec{i}, \vec{j}) , on considère les droites D et D' qui admettent les systèmes d'équations paramétriques suivants :

$$D \begin{cases} x = 2 - t \\ y = 2t \end{cases} (t \in \mathbb{R})$$

$$D' \begin{cases} x = 1 + 2t \\ y = 2 - 4t \end{cases} (t \in \mathbb{R}).$$

Donner sans justifier les coordonnées d'un vecteur directeur
$$\vec{u}$$
 de \vec{D} . $\vec{u} \begin{pmatrix} -1 \\ 2 \end{pmatrix}$

Donner sans justifier les coordonnées d'un vecteur directeur
$$\vec{v}$$
 de D' . $\vec{v} \begin{pmatrix} 2 \\ -4 \end{pmatrix}$

Les droites D et D' sont-elles parallèles ? Justifier.

On constate que $\vec{v} = -2\vec{u}$ donc les vecteurs \vec{u} et \vec{v} sont colinéaires.

On en déduit que les droites D et D' sont parallèles.

On peut aussi utiliser la notion de déterminant.

Rappel:
$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$
 (déterminant)

La notion de déterminant est utilisée en géométrie pour la colinéarité des vecteurs dans le plan muni d'un repère.

On calcule le déterminant du couple (\vec{u}, \vec{v}) dans la base (\vec{i}, \vec{j}) .

$$\begin{vmatrix} -1 & 2 \\ 2 & -4 \end{vmatrix} = (-1) \times (-4) - 2 \times 2 = 4 - 4 = 0$$

Le déterminant est nul donc on peut affirmer que les vecteurs \vec{u} et \vec{v} sont colinéaires.

Π.

1°) Compléter:
$$e^{x} \xrightarrow[x \to +\infty]{} + \infty \qquad \qquad e^{x} \xrightarrow[x \to -\infty]{} 0$$

On note \mathcal{C} la courbe représentative de la fonction exponentielle dans le plan muni d'un repère orthogonal (O, \vec{i}, \vec{j}) . Sur la feuille annexe :

- faire le tableau de variations de la fonction exponentielle avec les limites ;
- tracer la courbe \mathcal{L} ainsi que les tangentes aux points d'abscisses 0 et 1.

On place les points A(0;1) et B(1;e) (approximativement pour B).

Pour plus de précision, on peut aussi placer le point d'abscisse -1.

La tangente en A à \mathcal{C} a pour coefficient directeur 1 (car exp'(0) = $e^0 = 1$).

La tangente en B à \mathcal{C} a passe par l'origine O du repère (car elle a pour équation y = ex).

La fonction exponentielle est-elle minorée sur \mathbb{R} ? majorée sur \mathbb{R} ? bornée sur \mathbb{R} ?

La fonction exponentielle est minorée sur \mathbb{R} mais n'est pas majorée sur \mathbb{R} .

Elle n'est donc pas bornée sur \mathbb{R} .

2°) On considère l'équation $e^x = a$ d'inconnue $x \in \mathbb{R}$ où a est un réel donné.

Donner l'ensemble S des solutions dans \mathbb{R} de cette équation.

$$1^{er} \cos : a > 0$$
 $S = \{ \ln a \}$

$$2^{e} \cos : a \leq 0$$
 $S = \emptyset$

III.

On considère la fonction $f: x \mapsto xe^x$ définie sur \mathbb{R} .

1°) Calculer la dérivée de f. On donnera le résultat sous forme factorisée.

$$\forall x \in \mathbb{R} \quad f'(x) = (x+1)e^x$$

On applique la formule de dérivation d'un produit.

2°) En déduire la dérivée des fonctions $f_1: x \mapsto 2xe^x$, $f_2: x \mapsto \frac{xe^x}{2}$, $f_3: x \mapsto 4-3xe^x$ (forme factorisée).

$$\forall x \in \mathbb{R} \quad f_1'(x) = 2(x+1)e^x \qquad \forall x \in \mathbb{R} \quad f_2'(x) = \frac{(x+1)e^x}{2} \qquad \forall x \in \mathbb{R} \quad f_3'(x) = -3(x+1)e^x$$

$$\forall x \in \mathbb{R} \quad f_2'(x) = \frac{(x+1)e^x}{2}$$

$$\forall x \in \mathbb{R} \quad f_3'(x) = -3(x+1)e^x$$

• Pour f_1 , on observe que $\forall x \in \mathbb{R}$ $f_1(x) = 2f(x)$. Autrement dit, $f_1 = 2f$.

On en déduit que $f_1' = 2f'$ (formule du cours (ku)' = ku').

• Pour f_2 , on observe que $\forall x \in \mathbb{R}$ $f_2(x) = \frac{f(x)}{2}$. Autrement dit, $f_2 = \frac{f}{2}$ ce que l'on peut écrire $f_2 = \frac{1}{2}f$.

On en déduit que $f_2' = \frac{1}{2}f'$ (formule du cours (ku)' = ku') soit $f_2' = \frac{f'}{2}$.

• Pour f_3 , on observe que $\forall x \in \mathbb{R}$ $f_3(x) = 4 - 3f(x)$. Autrement dit, $f_3 = 4 - 3f$ ce que l'on peut écrire $f_2 = \frac{1}{2}f$. On en déduit que $f_3' = 0 - 3f'$ soit $f_3' = -3f'$.

$$\forall x \in \mathbb{R} \quad f'(x) - f(x) = (x+1)e^x - xe^x$$
$$= xe^x + e^x - xe^x$$
$$= e^x$$

On en déduit que f est une solution de l'équation différentielle $y'-y=e^x$.

IV.

On considère les fonctions $f: x \mapsto e^{2x} - e^x$ et $F: x \mapsto \frac{\left(e^x - 1\right)^2}{2}$ définies sur \mathbb{R} .

Démontrer que F est une primitive de f sur \mathbb{R} .

1^{ère} méthode:

On dérive directement l'expression de F.

$$\forall x \in \mathbb{R} \quad F'(x) = \frac{\cancel{2}e^x (e^x - 1)}{\cancel{2}} \quad \text{(on applique la formule } (u^2)' = 2uu')$$

$$= e^x (e^x - 1)$$

$$= e^{2x} - e^x$$

$$= f(x)$$

On en déduit que F est une primitive de f sur \mathbb{R} .

2^e méthode:

On développe l'expression de F.

$$\forall x \in \mathbb{R} \ F(x) = \frac{e^{2x} - 2e^x + 1}{2}$$

On calcule ensuite la dérivée de F.

$$\forall x \in \mathbb{R} \quad F'(x) = \frac{2e^{2x} - 2e^x}{2}$$
$$= \frac{2(e^{2x} - e^x)}{2}$$
$$= e^{2x} - e^x$$
$$= f(x)$$

On en déduit que F est une primitive de f sur \mathbb{R} .

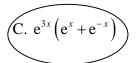
V.

1°) Choisir la (ou les) réponses possibles.

Pour tout réel x, $e^{2x} + e^{4x}$ est égal à :

A.
$$e^{6x}$$

B.
$$e^{2x}(1+e^2)$$



D. e^{8x^2}

$$E. e^{2x} \left(e^{2x} + 1 \right)$$

Les réponses exactes sont les réponses C et E.

2°) La solution de l'équation
$$\frac{\left(e^{2x}\right)^2}{e^x} + \frac{e^x}{e^{-2x}} = 4$$
 est $\frac{\ln 2}{3}$.

Rédiger entièrement la résolution au verso de la feuille annexe.

Résolvons dans R l'équation $\frac{\left(e^{2x}\right)^2}{e^x} + \frac{e^x}{e^{-2x}} = 4$ (1).

$$(1) \Leftrightarrow \frac{e^{4x}}{e^x} + e^{x - (-2x)} = 4$$

$$\Leftrightarrow e^{4x-x} + e^{x+2x} = 4$$

$$\Leftrightarrow e^{3x} + e^{3x} = 4$$

$$\Leftrightarrow 2e^{3x} = 4$$

$$\Leftrightarrow e^{3x} = 2$$

$$\Leftrightarrow 3x = \ln 2$$

$$\Leftrightarrow x = \frac{\ln 2}{3}$$

Soit S l'ensemble des solutions de (1).

$$S = \left\{ \frac{\ln 2}{3} \right\}$$

On vérifie la résolution à l'aide de la calculatrice (résolution approchée mais intéressante tout de même).

3°) Une primitive de la fonction $f: x \mapsto 2 - e^x$ est la fonction $F: x \mapsto 2x - e^x$.

VI.

On considère une fonction f définie et dérivable sur \mathbb{R} . On note g la fonction définie sur \mathbb{R} par g(x) = f(2x).

Calculer la dérivée g en fonction de la dérivée de f.

$$\forall x \in \mathbb{R}$$

$$g'(x) = 2 \times f'(2x)$$

On observe que g est la composée de la fonction $u: x \mapsto 2x$ suivie de la fonction f ce qui se note $g = f \circ u$.

On applique la formule de dérivation d'une composée $(f \circ u)'(x) = u'(x) \times f'[u(x)]$.

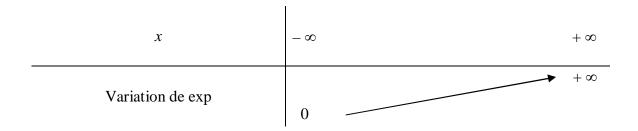
$$u'(x) = 2$$
 d'où l'égalité $g'(x) = 2 \times f'(2x)$.

uméro : Prénom et nom :

Annexe de l'interrogation écrite du vendredi 7 octobre 2022

II.

Tableau de variations:



Graphique:

