TS1

Test de révision début d'année

Partie 1 (le 2-9-2016)

Résoudre dans \mathbb{R} l'équation $x^2 = x$.	
Résoudre dans \mathbb{R} l'inéquation $x^2 > 1$.	
Écrire sans radical $A = \sqrt{x^2 + 2x + 1}$.	
Donner les coordonnées du sommet S de la parabole d'équation $y = x^2 + 2x + 3$.	
Discuter selon les valeurs du réel m le nombre de solutions réelles de l'équation $x^2 - mx + 1 = 0$ (E).	
Déterminer la forme canonique de la fonction $f: x \mapsto x^2 - 2x + 3$.	
Déterminer le minimum de la fonction $f: x \mapsto x - 4$.	
Résoudre dans \mathbb{R} l'équation $ -x+5 =2$.	
Pour tout $x > 0$ comparer \sqrt{x} et x .	
Calculer la dérivée de la fonction $f: x \mapsto x^2 (-3+5x)$.	
Calculer la dérivée de la fonction $f: x \mapsto \frac{-2x^2 + x - 1}{3x + 1}$.	
On considère la fonction $f: x \mapsto x^4 - 2x + 1$. Déterminer une équation de la tangente à sa courbe représentative au point d'abscisse 1.	
Déterminer le tableau de variations de la fonction $f: x \mapsto 2x^3 - 9x^2 - 24x$.	

Partie 2 (le 9-9-2016)

Déterminer une équation cartésienne de la droite passant par le point A(5;3) et admettant comme	
vecteur directeur $\vec{u}(-1;2)$.	
Déterminer la valeur du réel m pour que les droites d'équations cartésiennes respectives $6x-2y-5=0$	
et $(2m-1)x-(m+1)y+1-2m=0$ soient	
parallèles.	
On considère les fonctions $f: x \mapsto x^3 - 2x$ et	
$g: x \mapsto x-2$.	
Déterminer la position relative de leurs courbes représentatives respectives \mathscr{E} et \mathscr{E} ' dans le plan	
muni d'un repère.	
-	
On considère un triangle ABC du plan orienté tel	
que $(\overrightarrow{AB}, \overrightarrow{AC}) = \frac{\pi}{6}$ et $(\overrightarrow{BA}, \overrightarrow{BC}) = -\frac{\pi}{5}$.	
Déterminer la mesure principale en radians des	
angles orientés $(\overrightarrow{BA}, \overrightarrow{AC})$ et $(\overrightarrow{BC}, \overrightarrow{AB})$.	
Calculer $S = \sum_{k=2}^{k=10} \frac{1}{2^k}$.	
Soit ABC un triangle quelconque.	
Déterminer l'ensemble E des points M du plan tels	
que $AM \cdot AB = AM \cdot AC$.	
Soit ABCD un parallélogramme avec $AB = a$ et $AD = b$.	
Calculer $\overrightarrow{AC} \cdot \overrightarrow{BD}$ en fonction de a et b .	

Corrigé de la partie 1

1°)

Résolvons dans \mathbb{R} l'équation $x^2 = x$ (1).

(1)
$$\Leftrightarrow x^2 - x = 0$$

$$\Leftrightarrow x(x-1)=0$$

$$\Leftrightarrow x = 0 \text{ ou } x = 1$$

L'ensemble des solutions de (1) est $S = \{0; 1\}$.

2°) Résoudre dans \mathbb{R} l'inéquation $x^2 > 1$.

(2)
$$\Leftrightarrow x^2 - 1 > 0$$

Tableau de signe facultatif

$$S_2 = \left[-\infty; -1 \right] \cup \left[1; +\infty \right]$$

3°)

$$A = \sqrt{x^2 + 2x + 1}$$

$$=\sqrt{\left(x+1\right)^2}$$

$$= |x+1|$$

4°)

1^{ère} méthode :

$$a = 1$$

$$b = 2$$

$$c = 3$$

$$x_{\rm S} = -\frac{b}{2a}$$
 et $y_{\rm S} = f(x_{\rm S})$

Le sommet S de la parabole a pour coordonnées (-1; 2).

 2^{e} méthode : La parabole a aussi pour équation $y = (x+1)^{2} + 2$.

On vérifie en traçant la parabole sur la calculatrice.

Pour une forme canonique du type $a(x-\alpha)^2 + \beta$.

$$x^2 - mx + 1 = 0$$
 (E)

$$\Lambda = m^2 - 4$$

$$\Delta = (m-2)(m+2)$$

Si m = -2 ou m = 2, alors $\Delta = 0$ donc (E) admet une solution unique.

Si $m \in]-2$; 2[, alors $\Delta < 0$ donc (E) n'admet pas de solution.

Si $m \in]-\infty$; $-2[\bigcup]2$; $+\infty[$, alors $\Delta > 0$ donc (E) admet 2 solutions.

6°) Déterminer la forme canonique de la fonction $f: x \mapsto x^2 - 2x + 3$.

$$\forall x \in \mathbb{R} \quad f(x) = (x-1)^2 + 2$$

7°) Déterminer le minimum de la fonction $f: x \mapsto |x| - 4$.

Le minimum de f sur R est égal à -4.

8°) Résolvons dans \mathbb{R} l'équation |-x+5|=2 (1).

(1)
$$\Leftrightarrow -x+5=-2 \text{ ou } -x+5=2$$

$$\Leftrightarrow x = 7 \text{ ou } x = 3$$

L'ensemble des solutions de (1) est $S = \{3; 7\}$.

9°)

Si
$$x \in [0; 1]$$
, alors $\sqrt{x} > x > x^2$.

Si
$$x > 1$$
, alors $x^2 > x > \sqrt{x}$.

Si
$$x = 1$$
, alors $x^2 = x = \sqrt{x}$.

10°)
$$f(x) = -3x^2 + 5x^3$$

$$\forall x \in \mathbb{R} \quad f'(x) = -3 \times 2x + 5 \times 3x^2$$
$$= -6x + 15x^2$$

11°)
$$f(x) = \frac{-2x^3 + x - 1}{3x + 1}$$

$$\forall x \in \mathbb{R} \setminus \left\{ -\frac{1}{3} \right\} \quad f'(x) = \frac{\left(-4x+1 \right) \times \left(3x+1 \right) - \left(-2x^2 + x - 1 \right) \times 3}{\left(3x+1 \right)^2}$$
$$= \frac{12x^2 - 4x + 3x + 1 + 6x^2 - 3x + 3}{\left(3x+1 \right)^2}$$
$$= \frac{-6x^2 - 4x + 4}{\left(3x+1 \right)^2}$$

12°)

$$f(x) = x^4 - 2x + 1$$

T: y = f'(a)(x-a) + f(a) (équation générale d'une tangente)

$$\forall x \in \mathbb{R} \quad f'(x) = 4x^3 - 2$$

On applique la formule avec a = 1.

T a pour équation y = 2(x-1) soit y = 2x-2.

13°)
$$f(x) = 2x^3 - 9x^2 - 24x$$

$$\forall x \in \mathbb{R} \quad f'(x) = 6x^2 - 18x - 24$$

$$=6\left(x^{2}-3x-4\right)$$

Les racines évidentes du trinôme $x^2 - 3x - 4$ sont -1 et 4. Faire le tableau de signes.