TS1

Contrôle du jeudi 15 février 2018 (4 heures)

Partie commune (3 heures)

- Il est demandé de ne rien écrire sur le sujet.
- Le barème est donné sur 20.
- On précise qu'il n'y a pas de récurrence à faire pour les exercices du contrôle.

I. (7 points)

On étudie un modèle de propagation d'un virus dans une population, semaine après semaine. Chaque individu de la population peut être, à l'exclusion de toute autre possibilité:

- soit susceptible d'être atteint par le virus ;
- soit malade (atteint par le virus);
- soit immunisé (ne peut plus être atteint par le virus).

Un individu est immunisé lorsqu'il a été vacciné, ou lorsqu'il a guéri après avoir été atteint par le virus.

Pour tout entier naturel n, le modèle de propagation du virus est défini par les règles suivantes :

- parmi les individus susceptibles d'être atteint par le virus en semaine n, on observe qu'en semaine n+1: 85 % restent susceptibles d'être atteint par le virus, 5 % deviennent malades et 10 % deviennent immunisés;
- parmi les individus malades en semaine n, on observe qu'en semaine n+1: 65 % restent malades, et 35 % sont guéris et deviennent immunisés;
- tout individu immunisé en semaine n reste immunisé en semaine n+1.

On choisit au hasard un individu dans la population.

On considère les évènements suivants :

 X_n : «L'individu est susceptible d'être atteint par le virus en semaine n»;

 Y_n : « L'individu est malade en semaine n »;

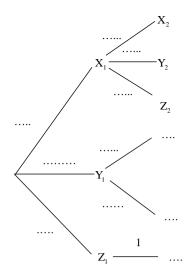
 Z_n : « L'individu est immunisé en semaine n ».

En semaine 0, tous les individus sont susceptibles d'être atteint par le virus. On a donc les probabilités suivantes : $P(X_0) = 1$, $P(Y_0) = 0$ et $P(Z_0) = 0$.

Partie A (2 points : 1°) 1 point ; 2°) 1 point)

Dans cette partie, on étudie l'évolution de l'épidémie au cours des semaines 1 et 2.

On pourra s'aider de l'arbre de probabilités ci-contre à recopier et compléter au brouillon.



1°) Calculer la probabilité que l'individu soit immunisé en semaine 2 c'est-à-dire $P(\mathbb{Z}_2)$.

On donnera la valeur exacte sous forme décimale.

2°) Sachant qu'un individu est immunisé en semaine 2, quelle est la probabilité qu'il ait été malade en semaine 1 ? On donnera la valeur exacte sous forme d'une fraction irréductible puis la valeur arrondie au millième.

Partie B (5 points : 1°) 1 point ; 2°) a) 1 point ; b) 1 point ; 3°) 1 point ; 4°) 1 point)

Dans cette partie, on étudie à long terme l'évolution de la maladie.

De plus, on note x_n , y_n , z_n les probabilités respectives des événements X_n , Y_n et Z_n . Ainsi, $x_0 = 1$, $y_0 = 0$ et $z_0 = 0$.

1°) Faire au brouillon un arbre de probabilités à deux niveaux en faisant figurer pour le premier niveau les événements X_n , Y_n , Z_n et pour le deuxième niveau les événements X_{n+1} , Y_{n+1} , Z_{n+1} .

Certaines probabilités pourront être nulles.

Sans donner d'explications, exprimer :

 x_{n+1} en fonction de x_n , y_n , z_n ; y_{n+1} en fonction de x_n , y_n , z_n ; z_{n+1} en fonction de x_n , y_n , z_n .

- 2°) a) Déterminer la nature de (x_n) . En déduire l'expression de x_n en fonction de n.
- b) Pour tout entier naturel n, on pose $u_n = y_n 0.25x_n$.

Démontrer que la suite (u_n) est géométrique. En déduire que pour tout entier naturel n, on a $y_n = \frac{0.85^n - 0.65^n}{4}$.

 3°) On admet que les termes de (y_n) augmentent, puis diminuent à partir d'un certain indice N, appelé le « pic épidémique » : c'est l'indice de la semaine pendant laquelle la probabilité d'être malade pour un individu choisi au hasard est la plus grande.

À l'aide de la calculatrice, déterminer la valeur du pic épidémique prévue par ce modèle.

 4°) Calculer la limite de chacune des suites (x_n) , (y_n) et (z_n) . Que peut-on en déduire quant à l'évolution de l'épidémie prévue à long terme par ce modèle ? Répondre par une phrase.

II. (6 points: 1°) 1 point; 2°) a) 1 point; b) 1 point; c) 1 point; 3°) 1 point; 4°) 1 point)

Le but de cet exercice est d'étudier les suites de termes positifs ou nuls dont le premier terme u_0 est strictement supérieur à 1 et possédant la propriété suivante : pour tout entier naturel $n \ge 1$, la somme des n premiers termes consécutifs est égale au produit des n premiers termes consécutifs. On admet qu'une telle suite existe et on la note (u_n) .

Elle vérifie donc trois propriétés :

- $u_0 > 1$;
- pour tout entier naturel $n, u_n \ge 0$;
- pour tout entier naturel $n \ge 1$, $u_0 + u_1 + u_2 + ... + u_{n-1} = u_0 \times u_1 \times u_2 \times ... \times u_{n-1}$.

Comme indiqué au début de l'énoncé, on répondra aux différentes questions sans faire de récurrence.

1°) Dans cette question, on choisit $u_0 = 3$.

Déterminer u_2 . On donnera la valeur exacte sous la forme d'une fraction irréductible.

Pour tout entier nature $n \ge 1$, on note $s_n = u_0 + u_1 + u_2 + ... + u_{n-1} = u_0 \times u_1 \times ... \times u_{n-1}$. On a en particulier $s_1 = u_0$.

- 2°) a) Justifier que pour tout entier naturel $n \ge 1$, $s_n > 1$.
- b) Démontrer que pour tout entier naturel $n \ge 1$, $u_n = \frac{s_n}{s-1}$.

Indication : On pourra utiliser l'égalité $s_{n+1} = s_n + u_n$ pour tout entier naturel $n \ge 1$.

- c) Démontrer que pour tout entier naturel n on a $u_n > 1$.
- 3°) À l'aide de l'algorithme ci-dessous, on veut calculer le terme u_n pour une valeur de n supérieure ou égale à 1 saisie en entrée et pour une valeur de u_0 strictement supérieure à 1 saisie en entrée.

Recopier et compléter la partie traitement de cet algorithme.

 4°) Justifier brièvement que pour tout entier naturel $n \ge 1$ on a $s_n > n$. En déduire la limite de la suite (s_n) puis celle de (u_n) .

Dans les exercices III et IV, le plan complexe P est muni d'un repère orthonormé (O, \vec{u}, \vec{v}) .

III. (2 points : 1°) 1 point ; 2°) 1 point)

On considère la suite des nombres complexes (z_n) définie sur \mathbb{N} par $z_n = \frac{1+\mathrm{i}}{(1-\mathrm{i})^n}$ pour tout entier naturel n.

Pour tout entier naturel n, on note A_n le point de P d'affixe z_n .

- 1°) Démontrer que pour tout entier naturel n, $\frac{z_{n+4}}{z_{--}}$ est réel.
- 2°) En déduire que pour tout entier naturel n, les points O, A_n et A_{n+4} sont alignés.

IV. (1 point)

Soit Ω le point de P d'affixe $i\sqrt{2}$. On note Γ le cercle de centre Ω passant par O. Démontrer que l'une des solutions de l'équation $z^2 - z\sqrt{6} + 2 = 0$ (E) est l'affixe d'un point de Γ .

V. (4 points : 1°) 1 point ; 2°) 1 point ; 3°) 1 point ; 4°) 1 point)

À tout réel m on associe la fonction $f_m: x \mapsto m e^x - e^{2x}$ définie sur \mathbb{R} et on note \mathscr{C}_m sa courbe représentative dans le plan muni d'un repère (O, \vec{i}, \vec{j}) .

- 1°) Calculer f_m '(x).
- 2°) Déterminer $\lim_{x \to +\infty} f_m(x)$ et $\lim_{x \to -\infty} f_m(x)$ en détaillant la démarche.

Pour les questions 3°) et 4°), on suppose que m est un réel strictement positif quelconque.

- 3°) Déterminer la valeur d'annulation de f_m '(x) en fonction de m. Faire un tableau récapitulatif comprenant l'étude du signe de f_m '(x) et les variations de f_m . Calculer le(s) extremum(s) éventuel(s) de f_m .
- 4°) On note K_m le point de \mathscr{C}_m en lequel la tangente est horizontale. Démontrer que K_m appartient à la courbe Γ d'équation $y = e^{2x}$.

Copie du bac blanc du 15-2-2018

•	1°) (une seule égalité)
Prénom : Nom :	2°)
I (7 mainte)	
I. (7 points)	
Partie A (2 points : 1°) 1 point ; 2°) 1 point)	
1°) (une seule égalité)	
2°)	
Partie B (5 points : 1°) 1 point ; 2°) a) 1 point ; b) 1 point ; 3°) 1 point ; 4°) 1 point)	
1°) Faire tenir les trois égalités sur la ligne ci-dessous.	
2°)	
	20\
	3°)
	4°)
3°) (une seule égalité)	
4°)	
	

II. (6 points : 1°) 1 point ; 2°) a) 1 point ; b) 1 point ; c) 1 point ; 3°) 1 point ; 4°) 1 point

III. (2 points : 1°) 1 point ; 2°) 1 point)	V. (4 points : 1°) 1 point ; 2°) 1 point ; 3°) 1 point ; 4°) 1 point)			
	1°) (une seule égalité quantifiée)			
	2°)			
	3°)			
IV. (1 point)				
	4°)			

Corrigé du contrôle du 15-2-2018

I.

On étudie un modèle de propagation d'un virus dans une population, semaine après semaine. Chaque individu de la population peut être, à l'exclusion de toute autre possibilité:

- soit susceptible d'être atteint par le virus ;
- soit malade (atteint par le virus);
- soit immunisé (ne peut plus être atteint par le virus).

Un individu est immunisé lorsqu'il a été vacciné, ou lorsqu'il a guéri après avoir été atteint par le virus.

Pour tout entier naturel n, le modèle de propagation du virus est défini par les règles suivantes :

- parmi les individus susceptibles d'être atteint par le virus en semaine n, on observe qu'en semaine n+1: 85 % restent susceptibles d'être atteint par le virus, 5 % deviennent malades et 10 % deviennent immunisés ;
- parmi les individus malades en semaine n, on observe qu'en semaine n+1: 65 % restent malades, et 35 % sont guéris et deviennent immunisés ;
- tout individu immunisé en semaine n reste immunisé en semaine n+1.

On choisit au hasard un individu dans la population.

On considère les évènements suivants :

 X_n : «L'individu est susceptible d'être atteint par le virus en semaine n»;

 Y_n : « L'individu est malade en semaine n »;

 Z_n : « L'individu est immunisé en semaine n ».

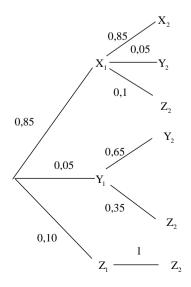
En semaine 0, tous les individus sont susceptibles d'être atteint par le virus. On a donc les probabilités suivantes : $P(X_0) = 1$, $P(Y_0) = 0$ et $P(Z_0) = 0$.

Partie A

Dans cette partie, on étudie l'évolution de l'épidémie au cours des semaines 1 et 2.

On pourra s'aider de l'arbre de probabilités ci-contre à recopier et compléter au brouillon.

On traduit les pourcentages en probabilités sous forme décimale.



1°) Calculer la probabilité que l'individu soit immunisé en semaine 2 c'est-à-dire $P(\mathbb{Z}_2)$. On donnera la valeur exacte sous forme décimale.

X₂, Y₂, Z₂ forment un système complet d'événements donc d'après la formule des probabilités totales, on a :

$$P(Z_{2}) = P(Z_{2} \cap X_{1}) + P(Z_{2} \cap Y_{1}) + P(Z_{2} \cap Z_{1})$$

$$= P(X_{1}) \times P(Z_{2} / X_{1}) + P(Y_{1}) \times P(Z_{2} / Y_{1}) + P(Z_{1}) \times P(Z_{2} / Z_{1})$$

$$= 0.85 \times 0.1 + 0.05 \times 0.35 + 0.1 \times 1$$

$$= 0.2025$$

2°) Sachant qu'un individu est immunisé en semaine 2, quelle est la probabilité qu'il ait été malade en semaine 1 ? On donnera la valeur exacte sous forme d'une fraction irréductible puis la valeur arrondie au millième.

On cherche $P(Y_1/Z_2)$.

$$P(Y_1/Z_2) = \frac{P(Y_1 \cap Z_2)}{P(Z_2)}$$
 (définition d'une probabilité conditionnelle)

$$= \frac{0.05 \times 0.35}{0.2025}$$

$$= \frac{0.0175}{0.2025}$$

$$= \frac{175}{2025}$$

$$= \frac{7 \times 25}{81 \times 25}$$

$$= \frac{7}{81}$$

$$P(Y_1/Z_2) = 0.08641975...$$

La valeur arrondie au millième de $P(Y_1/Z_2)$ est 0,086.

Partie B

Dans cette partie, on étudie à long terme l'évolution de la maladie.

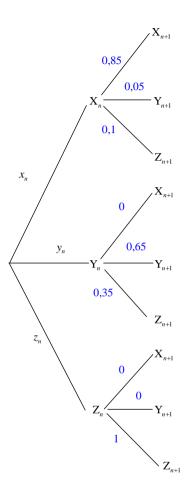
De plus, on note x_n , y_n , z_n les probabilités respectives des événements X_n , Y_n et Z_n . Ainsi, $x_0 = 1$, $y_0 = 0$ et $z_0 = 0$.

1°) Faire au brouillon un arbre de probabilités à deux niveaux en faisant figurer pour le premier niveau les événements X_n , Y_n , Z_n et pour le deuxième niveau les événements X_{n+1} , Y_{n+1} , Z_{n+1} .

Certaines probabilités pourront être nulles.

Sans donner d'explications, exprimer :

 x_{n+1} en fonction de x_n , y_n , z_n ; y_{n+1} en fonction de x_n , y_n , z_n ; z_{n+1} en fonction de x_n , y_n , z_n .



On peut aussi faire un arbre sur le même principe que dans la partie A en omettant les branches qui portent une probabilité nulle.

 X_n , Y_n , Z_n forment un système complet d'événements donc d'après la formule des probabilités totales, on peut écrire les trois égalités suivantes :

$$P(X_{n+1}) = P(X_{n+1} \cap X_n) + P(X_{n+1} \cap Y_n) + P(X_{n+1} \cap Z_n)$$

$$P(Y_{n+1}) = P(Y_{n+1} \cap X_n) + P(Y_{n+1} \cap Y_n) + P(Y_{n+1} \cap Z_n)$$

$$P(Z_{n+1}) = P(Z_{n+1} \cap X_n) + P(Z_{n+1} \cap Y_n) + P(Z_{n+1} \cap Z_n)$$

Ces égalités donnent :

$$x_{n+1} = P\left(\mathbf{X}_{n}\right) \times P\left(\mathbf{X}_{n+1} \, / \, \mathbf{X}_{n}\right) + P\left(\mathbf{Y}_{n}\right) \times P\left(\mathbf{X}_{n+1} \, / \, \mathbf{Y}_{n}\right) + P\left(\mathbf{Z}_{n}\right) \times P\left(\mathbf{X}_{n+1} \, / \, \mathbf{Z}_{n}\right)$$

$$y_{n+1} = P(X_n) \times P(Y_{n+1} / X_n) + P(Y_n) \times P(Y_{n+1} / Y_n) + P(Z_n) \times P(Y_{n+1} / Z_n)$$

$$z_{n+1} = P(X_n) \times P(Z_{n+1} / X_n) + P(Y_n) \times P(Z_{n+1} / Y_n) + P(Z_n) \times P(Z_{n+1} / Z_n)$$

En remplaçant les probabilités conditionnelles par leurs valeurs (lues dans l'arbre de probabilités), on obtient immédiatement les égalités suivantes :

$$x_{n+1} = 0.85x_n$$

$$y_{n+1} = 0.05x_n + 0.65y_n$$

$$z_{n+1} = 0.1x_n + 0.35y_n + z_n$$

Ces relations sont valables pour tout entier naturel n.

2°) a) Déterminer la nature de (x_n) . En déduire l'expression de x_n en fonction de n.

La suite (x_n) est géométrique de raison 0,85.

Comme son premier terme est égal à 1, $\forall n \in \mathbb{N}$ $x_n = 0.85^n$.

b) Pour tout entier naturel n, on pose $u_n = y_n - 0.25x_n$.

Démontrer que la suite (u_n) est géométrique. En déduire que pour tout entier naturel n, on a $y_n = \frac{0.85^n - 0.65^n}{4}$.

$$\forall n \in \mathbb{N} \quad u_{n+1} = y_{n+1} - 0,25x_{n+1}$$

$$= 0,65y_n + 0,05x_n - 0,25 \times 0,85 \times x_n$$

$$= 0,65y_n - 0,1625x_n$$

$$= 0,65y_n - 0,25 \times 0,65 \times x_n$$

$$= 0,65(y_n - 0,25x_n)$$

$$= 0,65u_n$$

On en déduit que la suite (u_n) est géométrique de raison 0,65.

Son premier terme est $u_0 = y_0 - 0.25x_0 = -0.25 = -\frac{1}{4}$.

Donc
$$\forall n \in \mathbb{N} \ u_n = -\frac{1}{4} \times 0,65^n$$
.
Or $\forall n \in \mathbb{N} \ y_n = \frac{1}{4} x_n + u_n$ d'où $y_n = \frac{1}{4} \times 0,85^n - \frac{1}{4} \times 0,65^n$.

Ainsi
$$\forall n \in \mathbb{N} \quad y_n = \frac{0.85^n - 0.65^n}{4}.$$

3°) On admet que les termes de (y_n) augmentent, puis diminuent à partir d'un certain indice N, appelé le « pic épidémique » : c'est l'indice de la semaine pendant laquelle la probabilité d'être malade pour un individu choisi au hasard est la plus grande.

À l'aide de la calculatrice, déterminer la valeur du pic épidémique prévue par ce modèle.

$$N = 4$$

Pour déterminer cette valeur, on peut soit rentrer la suite (y_n) dans la calculatrice grâce à l'expression du terme général établie à la question précédente soit rentrer les suites (x_n) , (y_n) , (z_n) grâce aux relations de récurrence.

Attention, l'énoncé précise bien que le pic épidémique est un indice et non une valeur de y_n . Le pic épidémique est égal à 4.

4°) Calculer la limite de chacune des suites (x_n) , (y_n) et (z_n) . Que peut-on en déduire quant à l'évolution de l'épidémie prévue à long terme par ce modèle ? Répondre par une phrase.

0,85 et 0,65 appartiennent à l'intervalle] – 1;1[donc $\lim_{n \to +\infty} 0,85^n = 0$ et $\lim_{n \to +\infty} 0,65^n = 0$.

Il est très important de préciser que -1 < 0.85 < 1 et -1 < 0.65 < 1 car il s'agit du résultat de cours sur la limite de a^n quand -1 < q < 1.

Ainsi,
$$\lim_{n \to +\infty} x_n = 0$$
 et $\lim_{n \to +\infty} y_n = 0$.

Or pour tout entier naturel n, X_n , Y_n , Z_n forment un système complet d'événements de l'univers des possibles donc la somme de leurs probabilités est égale à 1.

Ainsi,
$$\forall n \in \mathbb{N}$$
 $x_n + y_n + z_n = 1$ d'où $\forall n \in \mathbb{N}$ $z_n = 1 - x_n - y_n$.

Comme
$$\lim_{n \to +\infty} x_n = \lim_{n \to +\infty} y_n = 0$$
, on en déduit que $\lim_{n \to +\infty} z_n = 1$.

Cette dernière limite permet d'affirmer sur le long terme, selon ce modèle, tous les individus seront immunisés contre l'épidémie.

Autrement dit, cela signifie qu'à terme, l'épidémie sera éradiquée.

J'ai rajouté 1 point dans cette question, ce qui fait que la question a été noté sur 2 points (1 point pour les limites de (x_n) et (y_n) et 1 point pour la limite de (z_n)).

П.

Le but de cet exercice est d'étudier les suites de termes positifs ou nuls dont le premier terme u_0 est strictement supérieur à 1 et possédant la propriété suivante : pour tout entier naturel $n \ge 1$, la somme des n premiers termes consécutifs est égale au produit des n premiers termes consécutifs. On admet qu'une telle suite existe et on la note (u_n) .

Elle vérifie donc trois propriétés :

- $u_0 > 1$;
- pour tout entier naturel $n, u_n \ge 0$;
- pour tout entier nature $n \ge 1$, $u_0 + u_1 + u_2 + ... + u_{n-1} = u_0 \times u_1 \times u_2 \times ... \times u_{n-1}$.

Comme indiqué au début de l'énoncé, on répondra aux différentes questions sans faire de récurrence.

1°) Dans cette question, on choisit $u_0 = 3$.

Déterminer u_2 . On donnera la valeur exacte sous la forme d'une fraction irréductible.

On a $u_0 + u_1 = u_0 \times u_1$ soit $3 + u_1 = 3u_1$ donc $2u_1 = 3$ ce qui donne finalement $u_1 = \frac{3}{2}$.

On a
$$u_0 + u_1 + u_2 = u_0 \times u_1 \times u_2$$
 soit $3 + \frac{3}{2} + u_2 = 3 \times \frac{3}{2} \times u_2$.

Cette dernière égalité donne $\frac{9}{2} + u_2 = \frac{9}{2}u_2$. Ainsi $\frac{7}{2}u_2 = \frac{9}{2}$. On en déduit que $u_2 = \frac{9}{7}$.

Pour tout entier nature $n \ge 1$, on note $s_n = u_0 + u_1 + u_2 + ... + u_{n-1} = u_0 \times u_1 \times ... \times u_{n-1}$. On a en particulier $s_1 = u_0$.

2°) a) Justifier que pour tout entier naturel $n \ge 1$, $s_n > 1$.

On a:
$$s_n = u_0 + u_1 + u_2 + ... + u_{n-1}$$
.

Par hypothèse, $\forall n \in \mathbb{N} \ u_n \ge 0 \text{ donc } u_1 + u_2 + ... + u_{n-1} \ge 0 \ (1)$.

De plus, $u_0 > 1$ (2) par hypothèse.

Par addition membre à membre des inégalités (1) et (2), on obtient $s_n > 1$.

b) Démontrer que pour tout entier naturel $n \ge 1$, $u_n = \frac{s_n}{s_n - 1}$.

Indication : On pourra utiliser l'égalité $s_{n+1} = s_n + u_n$ pour tout entier naturel $n \ge 1$.

On utilise l'égalité $u_0+u_1+u_2+...+u_{n-1}+u_n=u_0\times u_1\times u_2\times...\times u_{n-1}\times u_n$.

Donc $\forall n \in \mathbb{N}^*$ $s_n + u_n = s_n \times u_n$

La dernière égalité donne immédiatement $s_n \times u_n - u_n = s_n$. Par suite, $u_n(s_n - 1) = s_n$.

Or d'après la question précédente, $s_n \neq 1$ d'où $s_n - 1 \neq 0$ et donc $\forall n \in \mathbb{N}^*$ $u_n = \frac{s_n}{s_n - 1}$.

c) Démontrer que pour tout entier naturel n on a $u_n > 1$.

Il y a deux méthodes possibles.

1^{ère} méthode :

Pour tout entier naturel $n \ge 1$, u_n est le quotient de deux réels strictement positifs car $s_n > 1$.

Or le dénominateur est plus petit que le numérateur on en déduit donc que $\forall n \in \mathbb{N}^*$ $u_n > 1$.

De plus, $u_0 > 1$ par hypothèse.

On en conclut que $\forall n \in \mathbb{N} \ u_n > 1$.

2^e méthode:

$$\forall n \in \mathbb{N}^* \ u_n - 1 = \frac{s_n}{s_n - 1} - 1 = \frac{s_n - (s_n - 1)}{s_n - 1} = \frac{1}{s_n - 1}$$

Or $\forall n \in \mathbb{N}^*$ $s_n > 1$ donc $\forall n \in \mathbb{N}^*$ $s_n - 1 > 0$ et par suite $\forall n \in \mathbb{N}^*$ $u_n - 1 > 0$ d'où $\forall n \in \mathbb{N}^*$ $u_n > 1$.

De plus, $u_0 > 1$ par hypothèse.

On en conclut que $\forall n \in \mathbb{N} \ u_n > 1$.

3°) À l'aide de l'algorithme ci-dessous, on veut calculer le terme u_n pour une valeur de n supérieure ou égale à 1 saisie en entrée et pour une valeur de u_n strictement supérieure à 1 saisie en entrée.

Recopier et compléter la partie traitement de cet algorithme.

On peut aisément programmer cet algorithme dans la calculatrice.

Si l'on fait tourner le programme pour n = 50 et u = 3 en entrée, on obtient pour affichage : 1,018474172. Cela permet de retrouver les valeurs de u_1 et de u_2 calculées à la question 1°).

4°) Justifier brièvement que pour tout entier naturel $n \ge 1$ on a $s_n > n$. En déduire la limite de la suite (s_n) puis celle de (u_n) .

 s_n est une somme de n termes tous strictement supérieur à 1 donc $s_n > n$.

On applique le principe de minoration d'une somme : « nombre de termes × le plus petit ».

Comme $\lim_{n \to +\infty} n = +\infty$ et que $\forall n \in \mathbb{N}^*$ $s_n > n$, $\lim_{n \to +\infty} s_n = +\infty$ (limite par comparaison).

$$\forall n \in \mathbb{N}^* \ u_n = \frac{s_n}{s-1}$$

Cette expression ne permet pas de trouver directement la limite de (u_n) car elle fait apparaître une forme indéterminée du type « $\frac{\infty}{\infty}$ ».

On transforme donc l'expression de u_n pour lever l'indétermination.

$$\forall n \in \mathbb{N}^* \ u_n = \frac{1}{1 - \frac{1}{s_n}}$$

Comme $\lim_{n \to +\infty} s_n = +\infty$, $\lim_{n \to +\infty} \frac{1}{s_n} = 0$ par limite d'un inverse.

On a donc $\lim_{n \to +\infty} \left(1 - \frac{1}{s_n}\right) = 1$ et par conséquent, $\lim_{n \to +\infty} u_n = 1$ par limite d'un inverse.

Dans les exercices III et IV, le plan complexe P est muni d'un repère orthonormé (O, \vec{u}, \vec{v}) .

III.

On considère la suite des nombres complexes (z_n) définie sur \mathbb{N} par $z_n = \frac{1+\mathrm{i}}{\left(1-\mathrm{i}\right)^n}$ pour tout entier naturel n.

Pour tout entier naturel n, on note A_n le point de P d'affixe z_n .

1°) Démontrer que pour tout entier naturel $n, \frac{z_{n+4}}{z_n}$ est réel.

$$\forall n \in \mathbb{N} \quad \frac{z_{n+4}}{z_n} = \frac{\frac{1+\mathbf{i}}{(1-\mathbf{i})^{n+4}}}{\frac{1+\mathbf{i}}{(1-\mathbf{i})^n}}$$

$$= \frac{(1-i)^n}{(1-i)^{n+4}}$$

$$=\frac{1}{\left(1-i\right)^4}$$

$$=\frac{1}{\left\lceil \left(1-i\right)^{2}\right\rceil ^{2}}$$

$$=\frac{1}{\left(-2\mathrm{i}\right)^2}$$

$$=\frac{1}{-\,4}$$

$$=-\frac{1}{4}$$

 $-\frac{1}{4}$ est un réel donc pour tout entier naturel n, $\frac{z_{n+4}}{z_n}$ est réel.

Le calcul de $(1-i)^4$ se fait très facilement sans la calculatrice en écrivant la puissance 4 comme carré du carré.

2°) En déduire que pour tout entier naturel n, les points O, A_n et A_{n+4} sont alignés.

D'après le résultat de la question précédente, $\forall n \in \mathbb{N}$ $z_{n+4} = -\frac{1}{4}z_n$ (1).

On va déduire de cette égalité une égalité sur les affixes de vecteurs en observant que le vecteur \overrightarrow{OA}_n a pour affixe z_n et le vecteur $\overrightarrow{OA}_{n+4}$ a pour affixe z_{n+4} .

Il faut faire très attention aux notations dans ce genre de question.

L'égalité (1) s'écrit donc $z_{\overline{OA}_{n+4}} = -\frac{1}{4}z_{\overline{OA}_n}$.

On en déduit l'égalité vectorielle $\overrightarrow{OA}_{n+4} = -\frac{1}{4}\overrightarrow{OA}_n$ (l').

D'après (1'), les vecteurs \overrightarrow{OA}_n et $\overrightarrow{OA}_{n+4}$ sont colinéaires et par suite, les points O, A_n et A_{n+4} sont alignés.

IV.

Soit Ω le point de P d'affixe $i\sqrt{2}$. On note Γ le cercle de centre Ω passant par O. Démontrer que l'une des solutions de l'équation $z^2 - z\sqrt{6} + 2 = 0$ (E) est l'affixe d'un point de Γ .

J'ai rajouté un point à cet exercice.

Le barème est donc : 1 point pour la résolution de l'équation ; 1 point pour la démonstration de l'appartenance du point A à Γ .

On commence par résoudre dans \mathbb{C} l'équation (E).

C'est une équation du second degré à coefficients réels dont le discriminant est $\Delta = \left(-\sqrt{6}\right)^2 - 4 \times 1 \times 2 = -2$.

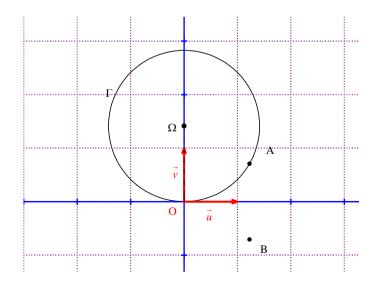
Comme $\Delta < 0$, (E) admet deux racines complexes conjuguées $z_1 = \frac{\sqrt{6} + i\sqrt{2}}{2}$ et $z_2 = \frac{\sqrt{6} - i\sqrt{2}}{2}$.

On notera que la résolution de (E) peut aussi se faire à la calculatrice.

On fait un graphique sur lequel on place les points O et Ω ainsi que les points d'affixes z_1 et z_2 .

On trace Γ et l'on constate que ce cercle semble passer par le point d'affixe z_1 .

Ce graphique peut d'ailleurs être fait sur la calculatrice grâce à l'outil de dessin.



Un autre raisonnement consiste à dire que le cercle Γ est contenu dans le demi-plan fermé situé au-dessus de l'axe des réels.

Or le point d'affixe z_2 n'est pas situé dans ce demi-plan. Par suite, le seul point susceptible d'appartenir à Γ est le point d'affixe z_1 .

On note donc A le point d'affixe $z_1 = \frac{\sqrt{6} + i\sqrt{2}}{2}$.

Pour démontrer qu'il appartient bien à Γ , on va démontrer que la distance ΩA est égale au rayon du cercle c'est-à-dire à $\Omega \Omega$.

$$O\Omega = |z_{\Omega}| = |i\sqrt{2}| = |i| \times |\sqrt{2}| = 1 \times \sqrt{2} = \sqrt{2}$$

$$\Omega A = \left| z_{A} - z_{\Omega} \right| = \left| \frac{\sqrt{6} + i\sqrt{2}}{2} - i\sqrt{2} \right| = \left| \frac{\sqrt{6} + i\sqrt{2} - 2i\sqrt{2}}{2} \right| = \left| \frac{\sqrt{6} - i\sqrt{2}}{2} \right| = \left| \frac{\sqrt{6} - i\sqrt{2}}{2} \right| = \frac{\sqrt{6} + 2}{2} = \frac{\sqrt{$$

On en déduit que $A \in \Gamma$.

Remarque : On a OA =
$$\left| \frac{\sqrt{6} - i\sqrt{2}}{2} \right| = \frac{\left| \sqrt{6} - i\sqrt{2} \right|}{2} = \frac{\sqrt{6+2}}{2} = \frac{\sqrt{8}}{2} = \sqrt{2}$$
.

Donc le triangle $OA\Omega$ est équilatéral.

V.

À tout réel m on associe la fonction $f_m: x \mapsto m e^x - e^{2x}$ définie sur \mathbb{R} et on note \mathscr{C}_m sa courbe représentative dans le plan muni d'un repère (O, \vec{i}, \vec{j}) .

1°) Calculer $f_m'(x)$.

$$\forall x \in \mathbb{R}$$
 $f_m'(x) = me^x - 2e^{2x}$

Pour la suite, on peut éventuellement factoriser le résultat. Cela sera utile pour l'étude du signe.

$$\forall x \in \mathbb{R} \quad f_m'(x) = e^x (m - 2e^x)$$

- 2°) Déterminer $\lim_{x \to +\infty} f_m(x)$ et $\lim_{x \to -\infty} f_m(x)$ en détaillant la démarche.
- On cherche la limite de f_m en $+\infty$.

Si m > 0, on rencontre une forme indéterminée du type « $\infty - \infty$ ».

Si
$$m = 0$$
, on a $f_0(x) = -e^{2x}$ donc $\lim_{x \to a} f_0(x) = -\infty$.

Si m < 0, on obtient $\lim_{x \to \infty} f_m(x) = -\infty$.

Pour traiter tous les cas d'un seul coup, on utilise la forme factorisée suivante de $f_m(x)$: $f_m(x) = e^x(m - e^x)$.

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} e^x = +\infty$$

$$\lim_{\substack{x \to +\infty \\ x \to +\infty}} (m - e^x) = -\infty$$
donc par limite d'un produit, $\lim_{\substack{x \to +\infty \\ x \to +\infty}} f_m(x) = -\infty$.

• On cherche la limite de f_m en en $-\infty$.

On a $\lim_{x \to -\infty} e^x = 0$ et $\lim_{x \to -\infty} e^{2x} = 0$ donc par les règles d'opérations algébriques sur les limites on obtient $\lim_{x \to -\infty} f_m(x) = 0$.

On peut aussi utiliser la forme factorisée de $f_m(x)$.

$$\lim_{x \to -\infty} e^{x} = 0$$

$$\lim_{x \to -\infty} (m - e^{x}) = m$$
donc par limite d'un produit, $\lim_{x \to -\infty} f_{m}(x) = 0$.

D'après le résultat de cette limite, \mathscr{C}_m admet l'axe des abscisses pour asymptote horizontale en $-\infty$.

Pour les questions 3°) et 4°), on suppose que m est un réel strictement positif quelconque.

3°) Déterminer la valeur d'annulation de f_m '(x) en fonction de m. Faire un tableau récapitulatif comprenant l'étude du signe de f_m '(x) et les variations de f_m . Calculer le(s) extremum(s) éventuel(s) de f_m .

On résout l'équation $f_m'(x) = 0$ (1).

(1)
$$\Leftrightarrow m - 2e^x = 0$$
 (car $e^x \neq 0$ pour tout réel x)

$$\Leftrightarrow e^x = \frac{m}{2}$$

$$\Leftrightarrow x = \ln \frac{m}{2}$$
 (car $m > 0$ par hypothèse)

Pour étudier le signe de $f_m'(x)$, on utilise la forme factorisée.

Le signe de e^x ne pose pas de problème.

Pour le signe de $m-2e^x$, il faudrait résoudre l'équation $m-2e^x=0$ ainsi que les inéquations $m-2e^x>0$ et $m-2e^x<0$.

X	- ∞	$ \ln \frac{m}{2} $		$+\infty$
SGN de e ^x	+		+	
SGN de $m-2e^x$	+	0	_	
SGN de $f_m'(x)$	+	0	_	
Variations de f_m	0	$\frac{m^2}{4}$		<u></u> −∞

 f_m présente un maximum global sur $\mathbb R$ atteint en $x=\ln \frac{m}{2}$.

On calcule $f_m \left(\ln \frac{m}{2} \right)$.

$$f_m\left(\ln\frac{m}{2}\right) = me^{\ln\frac{m}{2}} - e^{2\ln\frac{m}{2}}$$

$$= me^{\ln\frac{m}{2}} - \left(e^{\ln\frac{m}{2}}\right)^2$$

$$= m \times \frac{m}{2} - \left(\frac{m}{2}\right)^2$$

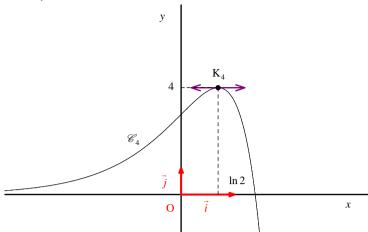
$$= m \times \frac{m}{2} - \left(\frac{m}{2}\right)^2$$

$$= \frac{m^2}{2} - \frac{m^2}{4}$$

$$= m^2$$

On vérifie ce tableau grâce à la calculatrice pour différentes valeurs de m.

Par exemple, la courbe \mathscr{C}_4 a l'allure suivante :



4°) On note K_m le point de \mathscr{C}_m en lequel la tangente est horizontale. Démontrer que K_m appartient à la courbe Γ d'équation $y = e^{2x}$.

D'après les questions précédentes, K_m a pour coordonnées $\left(\ln \frac{m}{2}; \frac{m^2}{4}\right)$.

$$e^{2x_{K_m}} = e^{2\ln\frac{m}{2}}$$

$$= \left(e^{\ln\frac{m}{2}}\right)^2$$

$$= \left(\frac{m}{2}\right)^2$$

$$= \frac{m^2}{4}$$

$$= y_{K_m}$$

On en déduit que K_m appartient à la courbe Γ d'équation $y = e^{2x}$.