TS1

Contrôle du mardi 30 janvier 2018 (50 minutes)

I. (3 points : 1°) 2 points ; 2°) 1 point) On considère la fonction $f: x \mapsto \cos(\pi x)$ définie sur \mathbb{R} . 1°) Démontrer que f est périodique. On attend trois lignes de calcul et une phrase de conclusion rédigée sur le modèle : « On en déduit que f est périodique de périodique de période ». 2°) Recopier et compléter sans justifier la phrase : « Les antécédents de 1 par f sont». **II.** (6 points : 1°) 1 point ; 2°) 2 points ; 3°) 2 points ; 4°) 1 point) À tout réel a on associe la fonction $f_a: x \mapsto \sin x - ax$ définie sur \mathbb{R} . On note \mathcal{C}_a sa courbe représentative dans le plan muni d'un repère (O, \vec{i}, \vec{j}) . 1°) Calculer $f_a'(x)$. $\forall x \in \mathbb{R}$ (une seule égalité) 2°) Compléter les phrases suivantes concernant le sens de variations de f_a : • Si a < -1, alors f_a est strictement sur \mathbb{R} .

Justifier avec précision la première affirmation sur les lignes ci-dessous.
3°) Compléter sans justifier les phrases suivantes :
$ullet$ Les abscisses des points de \mathcal{L}_1 en lesquels la tangente est horizontale sont les réels de la forme
avec $k \in \mathbb{Z}$.
• Les abscisses des points de $\mathcal{C}_{\frac{1}{2}}$ en lesquels la tangente est horizontale sont les réels de la forme
avec $k \in \mathbb{Z}$.
4°) Dans cette question, a est un réel quelconque. Compléter la phrase :
La primitive de f_a sur $\mathbb R$ qui s'annule en 0 est la fonction $F_a:x\mapsto\dots$
III. (6 points : 1°) 1 point ; 2°) 1 point ; 3°) 2 points ; 4°) 1 point)
On considère la fonction $f: x \mapsto \sin 3x - \cos 2x - \sin x$ définie sur \mathbb{R} . Les questions sont indépendantes.
1°) Calculer $f'(x)$.
$\forall x \in \mathbb{R}$ (un seul résultat)
Dans la suite de l'exercice, on admettra que pour tout réel x on a $\sin 3x - \sin x = 2\cos 2x \times \sin x$.

2°) Écrire sans justifier les solutions de l'équation $f(x) = 0$ dans l'intervalle $[0; \pi]$. On écrira les valeurs sans égalités séparées par des points-virgules.	IV. (5 points : 1°) 2 points ; 2°) 3 points) Soit ABCD un tétraèdre. On note I le milieu de [AB] et M le point défini par $\overrightarrow{MA} + \overrightarrow{MB} - 3\overrightarrow{MC} - \overrightarrow{MD} = \overrightarrow{0}$ (1).
	1°) Exprimer $\overrightarrow{MA} + \overrightarrow{MB}$ en fonction de \overrightarrow{MI} .
3°) Soit α le réel de l'intervalle $\left[-\pi;0\right]$ tel que $\cos\alpha=-\frac{1}{3}$.	
Calculer $f(\alpha)$.	
	2°) Démontrer que M appartient au plan (ICD).
4º) Eventinos (f(x) on fonction de cin v	
4°) Exprimer $f(x)$ en fonction de $\sin x$.	

Corrigé du contrôle du 30-1-2018

I.

On considère la fonction $f: x \mapsto \cos(\pi x)$ définie sur \mathbb{R} .

1°) Démontrer que f est périodique. On attend trois lignes de calcul et une phrase de conclusion rédigée sur le modèle : « On en déduit que f est périodique de périodique de période ».

On peut appliquer la propriété du cours.

a et b sont deux réels tels que a > 0.

Les fonctions $f: x \mapsto \cos(ax+b)$ et $g: x \mapsto \sin(ax+b)$ sont périodiques de période $T = \frac{2\pi}{a}$.

Ici,
$$a = \pi$$
 et $b = 0$. On a $\frac{2\pi}{\pi}$.

On obtient immédiatement que f est périodique de périodique de période 2.

On peut le vérifier très facilement en traçant la représentation graphique de f sur l'écran de la calculatrice.

On peut faire la vérification par le calcul.

$$\forall x \in \mathbb{R} \quad f(x+2) = \cos[\pi(x+2)]$$
$$= \cos(\pi x + 2\pi)$$
$$= \cos(\pi x)$$
$$= f(x)$$

Il y a deux manières de répondre :

Les antécédents de 1 par f sont 2k avec $k \in \mathbb{Z}$.

Les antécédents de 1 par f sont les entiers relatifs pairs.

II.

À tout réel a on associe la fonction $f_a: x \mapsto \sin x - ax$ définie sur \mathbb{R} .

On note \mathcal{L}_a sa courbe représentative dans le plan muni d'un repère $(0, \vec{i}, \vec{j})$

1°) Calculer $f_a'(x)$.

$$\forall x \in \mathbb{R}$$
 $f_a'(x) = \cos x - a$ (une seule égalité)

- 2°) Compléter les phrases suivantes concernant le sens de variations de $\,f_a\,$:
- Si a > 1, alors f_a est strictement décroissante sur \mathbb{R} .
- Si a < -1, alors f_a est strictement croissante sur \mathbb{R} .

Justifier avec précision la première affirmation sur les lignes ci-dessous.

On suppose que a > 1. On a donc 1 - a < 0.

D'autre part, $\forall x \in \mathbb{R} \cos x \leq 1$ d'où $\forall x \in \mathbb{R} \cos x - a \leq 1 - a$.

On en déduit que $\forall x \in \mathbb{R}$ $f_a'(x) < 0$.

Par conséquent, f_a est strictement décroissante sur \mathbb{R} .

- 3°) Compléter sans justifier les phrases suivantes :
- Les abscisses des points de C_1 en lesquels la tangente est horizontale sont les réels de la forme $2k\pi$ avec $k \in \mathbb{Z}$.
- Les abscisses des points de $\mathcal{L}_{\frac{1}{2}}$ en lesquels la tangente est horizontale sont les réels de la forme $\frac{\pi}{3} + 2k\pi$ ou $-\frac{\pi}{3} + 2k\pi$ avec $k \in \mathbb{Z}$.

Les abscisses des points de \mathcal{C}_a en lesquels la tangente est horizontale sont les solutions de l'équation f_a '(x) = 0 soit $\cos x = a$.

Pour a = 1, les solutions de l'équation $\cos x = 1$ sont les réels de la forme $2k\pi$ avec $k \in \mathbb{Z}$.

Pour $a = \frac{1}{2}$, les solutions de l'équation $\cos x = \frac{1}{2}$ sont les réels de la forme $\frac{\pi}{3} + 2k\pi$ avec $k \in \mathbb{Z}$ et les réels de la forme $-\frac{\pi}{3} + 2k'\pi$ avec $k' \in \mathbb{Z}$.

4°) Dans cette question, a est un réel quelconque. Compléter la phrase :

La primitive de f_a sur \mathbb{R} qui s'annule en 0 est la fonction $F_a: x \mapsto 1 - \cos x - \frac{ax^2}{2}$.

En effet, une primitive de f_a sur \mathbb{R} est la fonction $x \mapsto -\cos x - \frac{ax^2}{2}$ donc les primitives de f_a sur \mathbb{R} sont les fonctions $x \mapsto -\cos x - \frac{ax^2}{2} + k$ avec $k \in \mathbb{R}$.

Pour que cette primitive s'annule en 0 c'est-à-dire vaille 0 pour x = 0, il faut et il suffit que k = 1.

III.

On considère la fonction $f: x \mapsto \sin 3x - \cos 2x - \sin x$ définie sur \mathbb{R} .

Les questions sont indépendantes.

1°) Calculer f'(x).

$$\forall x \in \mathbb{R}$$
 $f'(x) = 3\cos 3x + 2\sin 2x - \cos x$ (un seul résultat)

Dans la suite de l'exercice, on admettra que pour tout réel x on a $\sin 3x - \sin x = 2\cos 2x \times \sin x$.

2°) Écrire sans justifier les solutions de l'équation f(x) = 0 dans l'intervalle $[0; \pi]$.

On écrira les valeurs sans égalités séparées par des points-virgules.

$$\frac{\pi}{4}$$
; $\frac{3\pi}{4}$; $\frac{\pi}{6}$; $\frac{5\pi}{6}$

Pour résoudre l'équation f(x) = 0 dans l'intervalle $[0; \pi]$, on transforme l'expression de f(x) en une forme factorisée.

 $\forall x \in \mathbb{R}$ $f(x) = 2\cos 2x \sin x - \cos 2x$

$$=\cos 2x(2\sin x-1)$$

On obtient ensuite une équation produit nul.

$$f(x) = 0 \Leftrightarrow \cos 2x = 0$$
 ou $\sin x = \frac{1}{2}$

Dans l'intervalle $[0; \pi]$,

les solutions de l'équation $\cos 2x = 0$ sont $\frac{\pi}{4}$ et $\frac{3\pi}{4}$;

les solutions de l'équation $\sin x = \frac{1}{2}$ sont $\frac{\pi}{6}$ et $\frac{5\pi}{6}$.

On vérifie aisément ces solutions en traçant la courbe représentative de la fonction f sur l'écran de la calculatrice.

3°) Soit α le réel de l'intervalle $[-\pi; 0]$ tel que $\cos \alpha = -\frac{1}{3}$.

Calculer $f(\alpha)$.

On utilise la forme factorisée de f(x) obtenue à la question précédente : $f(x) = \cos 2x(2\sin x - 1)$.

On commence par calculer $\sin \alpha$.

D'après la relation fondamentale, on a : $\cos^2\alpha + \sin^2\alpha = 1$.

D'où $\left(-\frac{1}{3}\right)^2 + \sin^2 \alpha = 1$ ce qui donne immédiatement $\sin^2 \alpha = \frac{8}{9}$.

On en déduit que $\sin \alpha = \frac{2\sqrt{2}}{3}$ ou $\sin \alpha = -\frac{2\sqrt{2}}{3}$.

Or $\alpha \in [-\pi; 0]$. Donc $\sin \alpha \leq 0$.

Finalement, on peut écrire $\sin \alpha = -\frac{2\sqrt{2}}{3}$.

On calcule aussi $\cos 2\alpha$.

$$\cos 2\alpha = 2\cos^2 \alpha - 1$$

$$=2\times\left(-\frac{1}{3}\right)^2-1$$

$$=\frac{2}{9}-1$$

$$=-\frac{7}{9}$$

On calcule enfin $f(\alpha)$.

$$f(\alpha) = \cos 2\alpha (2\sin \alpha - 1)$$

$$=-\frac{7}{9}\left(-\frac{4\sqrt{2}}{3}-1\right)$$

$$=\frac{28\sqrt{2}+21}{27}$$

4°) Exprimer f(x) en fonction de $\sin x$.

$$\forall x \in \mathbb{R}$$
 $f(x) = 2\cos 2x \sin x - \cos 2x$

$$=\cos 2x(2\sin x-1)$$

$$=(1-2\sin^2 x)(2\sin x-1)$$

$$= -4\sin^3 x + 2\sin^2 x + 2\sin x - 1$$

Soit ABCD un tétraèdre. On note I le milieu de [AB] et M le point défini par $\overrightarrow{MA} + \overrightarrow{MB} - 3\overrightarrow{MC} - \overrightarrow{MD} = \overrightarrow{0}$ (1).

1°) Exprimer $\overrightarrow{MA} + \overrightarrow{MB}$ en fonction de \overrightarrow{MI} .

On sait que I le milieu de $\left[AB\right]$ par hypothèse donc $\overrightarrow{MA} + \overrightarrow{MB} = 2\overrightarrow{MI}$.

2°) Démontrer que M appartient au plan (ICD).

(1)
$$\Leftrightarrow 2\overrightarrow{MI} - 3\overrightarrow{MC} - \overrightarrow{MD} = \overrightarrow{0}$$

$$\Leftrightarrow \overrightarrow{MI} = \frac{3}{2}\overrightarrow{MC} + \frac{1}{2}\overrightarrow{MD}$$

D'après cette dernière égalité, les vecteurs \overrightarrow{MI} , \overrightarrow{MC} et \overrightarrow{MD} sont coplanaires. Par suite, les points M, I, C, D sont coplanaires et donc $M \in (ICD)$.

Autre méthode :

(1)
$$\Leftrightarrow 2\overrightarrow{MI} - 3\overrightarrow{MC} - \overrightarrow{MD} = \overrightarrow{0}$$

$$\Leftrightarrow -2\overrightarrow{MI} - 3\overrightarrow{IC} - \overrightarrow{ID} = \overrightarrow{0}$$

$$\Leftrightarrow 2\overrightarrow{IM} = 3\overrightarrow{IC} + \overrightarrow{ID}$$

$$\Leftrightarrow \overrightarrow{IM} = \frac{3}{2}\overrightarrow{IC} + \frac{1}{2}\overrightarrow{ID}$$