TS1

Contrôle du mardi 30 mai 2017 (50 minutes)

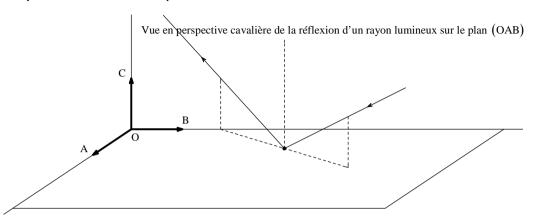
Prénom: Nom: Note:/
I. (6 points : 1°) 2 points ; 2°) 4 points)
Dans l'espace muni d'un repère orthonormé $(0, \vec{i}, \vec{j}, \vec{k})$, on considère les plans P_1 et P_2 d'équations cartésienne respectives $11x - 5y - 6z + 2 = 0$ et $4x - 2y + 9z + 1 = 0$.
1°) Les plans P_1 et P_2 sont-ils perpendiculaires ? Justifier en rédigeant soigneusement.
2°) Déterminer un système d'équations paramétriques de la droite Δ d'intersection de P_1 et P_2 .

$II.\ (14\ points\ ;\ 1^\circ)\ 2\ points\ ;\ 2^\circ)\ a)\ 2\ points\ ;\ b)\ 2\ points\ ;\ b)\ 2\ points\ ;\ c)\ 2\ points\ ;\ c)\ 2\ points\ ;\ c)\ 2\ points\ ;\ b)\ 2\ points\ i\ b)\ 2\ points\ i\$

Un catadioptre est un dispositif optique formé de trois miroirs en forme de « coin de cube », les faces réfléchissantes tournées vers l'intérieur. On en trouve dans les réflecteurs de certains véhicules ainsi que dans les appareils de topographie. Les points O, A, B et C sont des sommets d'un cube, de telle sorte que le repère $\left(O, \overline{OA}, \overline{OB}, \overline{OC}\right)$ soit un repère orthonormé. On utilisera ce repère dans tout l'exercice.

Les trois miroirs du catadioptre sont représentés par les plans (OAB), (OBC) et (OAC).

Les rayons lumineux sont modélisés par des droites.



Règles de réflexion d'un rayon lumineux (admises) :

- lorsqu'un rayon lumineux de vecteur directeur $\vec{u}(a;b;c)$ est réfléchi par le plan (OAB), un vecteur directeur du rayon réfléchi est $\vec{u}'(a;b;-c)$;
- lorsqu'un rayon lumineux de vecteur directeur $\vec{u}(a;b;c)$ est réfléchi par le plan (OBC), un vecteur directeur du rayon réfléchi est $\vec{u}'(-a;b;c)$;
- lorsqu'un rayon lumineux de vecteur directeur $\vec{u}(a;b;c)$ est réfléchi par le plan (OAC), un vecteur directeur du rayon réfléchi est $\vec{u}'(a;-b;c)$.

1°) Propriété des catadioptres

En utilisant les règles précédentes, démontrer que si un rayon lumineux de vecteur directeur $\vec{u}(a;b;c)$ est réfléchi successivement par les plans (OAB), (OBC) et (OAC), le rayon final est parallèle au rayon initial.		
successivement par les plans (OAD), (OBC) et (OAC), le layon mai est parancte au layon l	minut.	

Pour la suite, on considère un rayon lumineux modélisé par une droite D_1 de vecteur directeur $\overrightarrow{u_1}(-2;-1;-1)$ qui vient frapper le plan (OAB) au point $I_1(2;3;0)$. Le rayon réfléchi est modélisé par la droite D_2 de vecteur	On note D_4 la droite qui représente le rayon lumineux après réflexion sur le plan (OAC). Elle est donc parallèle à la droite D_1 .
directeur $\overrightarrow{u_2}(-2;-1;1)$ et passant par le point I_1 .	4°) Étude du trajet de la lumière On note P le plan défini par les droites D_1 et D_2 .
2°) Réflexion de D_2 sur le plan (OBC)	
a) Donner sans justifier une représentation paramétrique de la droite D_2 .	a) Démontrer que le vecteur $\vec{v}(1; -2; 0)$ est un vecteur normal au plan P .
b) Déterminer les coordonnées du point d'intersection I_2 de D_2 et du plan (OBC).	b) Déterminer une équation cartésienne du plan <i>P</i> .
On note D_3 la droite qui représente le rayon lumineux après réflexion sur le plan (OBC). D_3 est donc la droite qui passe par le point I_2 et de vecteur directeur $\overrightarrow{u_3}(2;-1;1)$.	
D_3 est donc la droite qui passe par le point I_2 et de vecteur directeur $u_3(2;-1;1)$.	
3°) Réflexion de D_3 sur le plan (OAC)	
Calculer les coordonnées du point d'intersection I_3 de la droite D_3 avec le plan (OAC).	
	c) Les droites D_3 et D_4 sont-elles incluses dans le plan P ? Justifier brièvement.

Corrigé du contrôle du 30-5-2017

I.

Dans l'espace muni d'un repère orthonormé $(0, \vec{i}, \vec{j}, \vec{k})$, on considère les plans P_1 et P_2 d'équations cartésiennes respectives 11x-5y-6z+2=0 et 4x-2y+9z+1=0.

1°) Les plans P_1 et P_2 sont-ils perpendiculaires? Justifier en rédigeant soigneusement.

Le vecteur $\overrightarrow{u_1}(11; -5; -6)$ est un vecteur normal à P_1 .

Le vecteur $\overrightarrow{u_2}(4;-2;9)$ est un vecteur normal à P_2 .

$$\vec{u_1} \cdot \vec{u_2} = 4 \times 11 + 2 \times 5 - 6 \times 9 = 0$$

Les vecteurs $\overrightarrow{u_1}$ et $\overrightarrow{u_2}$ sont orthogonaux donc P_1 et P_2 sont perpendiculaires.

2°) Déterminer un système d'équations paramétriques de la droite Δ d'intersection de P_1 et P_2 .

Pour déterminer un système d'équations paramétriques de Δ , on considère le système $\begin{cases} 11x - 5y - 6z + 2 = 0 \\ 4x - 2y + 9z + 1 = 0 \end{cases}$

Ce système est équivalent à $\begin{cases} 11x - 5y = 6z - 2 & (1) \\ 4x - 2y = -9z - 1 & (2) \end{cases}$

On pose z = t $(t \in \mathbb{R})$.

Les équations (1) et (2) donnent alors les équations 11x - 5y = 6t - 2 (1') et 4x - 2y = -9t - 1 (2'). On résout alors le système linéaire de deux équations à deux inconnues avec le paramètre t.

On utilise la méthode des multiplicateurs.

$$\begin{cases} 11x - 5y = 6t - 2 & \times 2 \\ 4x - 2y = -9t - 1 & \times (-5) & \times (-11) \end{cases}$$

$$\begin{cases} (1') \\ (2') \end{cases} \Leftrightarrow \begin{cases} 2x = 57t + 1 \\ 2y = 123t + 3 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{57t}{2} + \frac{1}{2} \\ y = \frac{123}{2}t + \frac{3}{2} \end{cases}$$

Un système d'équations paramétriques de Δ s'écrit $\begin{cases} x = \frac{57t}{2} + \frac{1}{2} \\ y = \frac{123}{2}t + \frac{3}{2} & (t \in \mathbb{R}). \\ z = t \end{cases}$

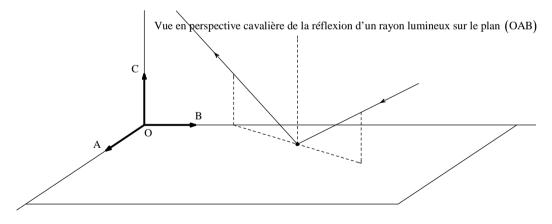
Il est possible de poser $t=2\lambda$ avec $\lambda\in\mathbb{R}$. On peut aussi directement remplacer t par 2t dans le système d'équations paramétriques.

Un autre système d'équations paramétriques de Δ s'écrit $\begin{cases} x = 57\lambda + \frac{1}{2} \\ y = 123\lambda + \frac{3}{2} \\ z = 2\lambda \end{cases} \quad (\lambda \in \mathbb{R}).$

II.

Un catadioptre est un dispositif optique formé de trois miroirs en forme de « coin de cube », les faces réfléchissantes tournées vers l'intérieur. On en trouve dans les réflecteurs de certains véhicules ainsi que dans les appareils de topographie. Les points O, A, B et C sont des sommets d'un cube, de telle sorte que le repère $\left(O, \overrightarrow{OA}, \overrightarrow{OB}, \overrightarrow{OC}\right)$ soit un repère orthonormé. On utilisera ce repère dans tout l'exercice.

Les trois miroirs du catadioptre sont représentés par les plans (OAB), (OBC) et (OAC). Les rayons lumineux sont modélisés par des droites.



Règles de réflexion d'un rayon lumineux (admises) :

- lorsqu'un rayon lumineux de vecteur directeur $\vec{u}(a;b;c)$ est réfléchi par le plan (OAB), un vecteur directeur du rayon réfléchi est $\vec{u}'(a;b;-c)$;
- lorsqu'un rayon lumineux de vecteur directeur $\vec{u}(a;b;c)$ est réfléchi par le plan (OBC), un vecteur directeur du rayon réfléchi est $\vec{u}'(-a;b;c)$;
- lorsqu'un rayon lumineux de vecteur directeur $\vec{u}(a;b;c)$ est réfléchi par le plan (OAC), un vecteur directeur du rayon réfléchi est $\vec{u}'(a;-b;c)$.

1°) Propriété des catadioptres

En utilisant les règles précédentes, démontrer que si un rayon lumineux de vecteur directeur $\vec{u}(a;b;c)$ est réfléchi successivement par les plans (OAB), (OBC) et (OAC), le rayon final est parallèle au rayon initial.

Un vecteur directeur du rayon réfléchi par le plan (OAB) est $\overrightarrow{u_1}(a;b;-c)$.

Un vecteur directeur du rayon réfléchi ensuite par le plan (OBC) est $\overrightarrow{u}_2(-a;b;-c)$.

Enfin un vecteur directeur du rayon réfléchi par le plan (OAC) est $\overrightarrow{u}_3(-a;-b;-c)$.

On a : $\overrightarrow{u_3} = -\overrightarrow{u}$.

 \vec{u}_3 est colinéaire à \vec{u} .

Le rayon final est donc parallèle au rayon initial.

Pour la suite, on considère un rayon lumineux modélisé par une droite D_1 de vecteur directeur $\overrightarrow{u_1}(-2;-1;-1)$ qui vient frapper le plan (OAB) au point $I_1(2;3;0)$. Le rayon réfléchi est modélisé par la droite D_2 de vecteur directeur $\overrightarrow{u_2}(-2;-1;1)$ et passant par le point I_1 .

- 2°) Réflexion de D_2 sur le plan (OBC)
- a) Donner sans justifier une représentation paramétrique de la droite D_2 .

$$\begin{cases} x = 2 - 2t \\ y = 3 - t \\ z = t \end{cases} \quad (t \in \mathbb{R})$$

b) Déterminer les coordonnées du point d'intersection I, de D, et du plan (OBC).

(OBC) a pour équation x = 0.

Donc $x_{I_2} = 0$.

Par suite, le paramètre t du point I_2 sur D_2 vérifie donc l'égalité 2-2t=0 ce qui donne t=1.

Le point I₂ a donc pour coordonnées (0;2;1).

On note D_3 la droite qui représente le rayon lumineux après réflexion sur le plan (OBC).

 D_3 est donc la droite qui passe par le point I_2 et de vecteur directeur $\overrightarrow{u_3}(2;-1;1)$.

3°) Réflexion de D_3 sur le plan (OAC)

Calculer les coordonnées du point d'intersection I_3 de la droite D_3 avec le plan (OAC).

$$D_3 \begin{cases} x = 2t' \\ y = 2 - t' \quad (t' \in \mathbb{R}) \\ z = 1 + t' \end{cases}$$

(OAC) a pour équation y = 0.

Donc $y_{L} = 0$.

Par suite, le paramètre t' du point I_3 sur D_3 vérifie donc l'égalité 2-t'=0 ce qui donne t'=2.

Le point I₃ a donc pour coordonnées (4;0;3).

b) Déterminer les coordonnées du point d'intersection I_2 de D_2 et du plan (OBC).

(OBC) a pour équation x = 0.

Donc $x_{I_2} = 0$.

Par suite, le paramètre t du point I_2 sur D_2 vérifie donc l'égalité 2-2t=0 ce qui donne t=1.

Le point I_2 a donc pour coordonnées (0; 2; 1).

On note D_4 la droite qui représente le rayon lumineux après réflexion sur le plan (OAC). Elle est donc parallèle à la droite D_1 .

4°) Étude du trajet de la lumière

On note P le plan défini par les droites D_1 et D_2 .

a) Démontrer que le vecteur $\vec{v}(1; -2; 0)$ est un vecteur normal au plan P.

 $\overrightarrow{u_1}$ est un vecteur directeur de D_1 .

 $\overrightarrow{u_2}$ est un vecteur directeur de D_2 .

Les droites D_1 et D_2 sont sécantes en I_1 .

$$\vec{u}_1 \cdot \vec{v} = -2 \times 1 - 1 \times (-2) - 1 \times 0 = -2 + 2 = 0$$

$$\vec{u_2} \cdot \vec{v} = -2 \times 1 - 1 \times (-2) + 1 \times 0 = -2 + 2 = 0$$

Le vecteur \vec{v} est orthogonal aux vecteurs $\vec{u_1}$ et $\vec{u_2}$. Par conséquent, \vec{v} est un vecteur normal au plan P.

b) Déterminer une équation cartésienne du plan *P*.

Les droites D_1 et D_2 sont sécantes en I_1 .

P est donc le plan passant par I_1 et admettant le vecteur \vec{v} pour vecteur normal.

Soit M un point quelconque de l'espace de coordonnées (x; y; z).

$$M \in P \Leftrightarrow \overline{\mathbf{I}_{1}} \vec{\mathbf{M}} \cdot \vec{\mathbf{v}} = 0$$

$$\Leftrightarrow 1 \times (x - 2) - 2(y - 3) + 0 \times z = 0 \qquad (\text{car } \mathbf{I}_{1}(2; 3; 0) \text{ et } \vec{\mathbf{v}}(1; -2; 0))$$

$$\Leftrightarrow x - 2y + 4 = 0$$

Une équation cartésienne de *P* est x-2y+4=0.

c) Les droites D_3 et D_4 sont-elles incluses dans le plan P? Justifier brièvement.

Le point I_3 appartient aux droites D_3 et D_4 .

$$x_{I_3} - 2y_{I_3} + 4 = 4 - 2 \times 0 + 4 = 8 \text{ donc } I_3 \notin P.$$

On en déduit que les droites D_3 et D_4 ne sont pas incluses dans le plan P.