TS1

Contrôle du vendredi 21 avril 2017 (50 minutes)

Prénom et nom : Note :

т.	"		4~
	n	poin	IS

 $I_1 =$

On pose
$$I_1 = \int_{-1}^{1} (2x^3 - 3x^2 + 5x + 1) dx$$
 ; $I_2 = \int_{0}^{\frac{\pi}{4}} \frac{\sin x}{(1 - 2\cos x)^2} dx$; $I_3 = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^{\sin x}} dx$.

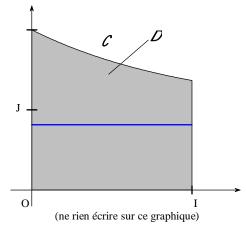
Pour le calcul de I_3 , on observera que $\frac{\cos x}{1 + e^{\sin x}} = \frac{\cos x \times e^{-\sin x}}{1 + e^{-\sin x}}$ pour tout réel x.

Compléter les égalités suivantes puis détailler succinctement le calcul de chacune des intégrales en trois ou quatre lignes.

•	<u>=</u>	2

II. (3 points)

On considère la fonction $f: x \mapsto 1 + e^{-x}$ définie sur \mathbb{R} et on note \mathcal{C} sa courbe représentative dans un repère orthogonal (O, I, J) du plan. On considère le domaine \mathcal{D} du plan compris d'une part entre l'axe des abscisses et la courbe \mathcal{C} , d'autre part entre les droites d'équations x = 0 et x = 1. La courbe \mathcal{C} et le domaine \mathcal{D} sont représentés cidessous.



On se propose de partager le domaine \mathcal{D} en deux domaines de même aire par la droite d'équation y = a où a est un réel compris entre 0 et 1.

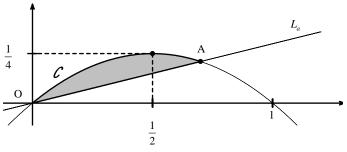
Déterminer la valeur exacte du réel a.

..... (une seule égalité)

III. (3 points : 1°) 1 point ; 2°) 2 points)

On considère la fonction $f: x \mapsto x - x^2$ définie sur \mathbb{R} et on note \mathcal{C} sa courbe représentative dans un repère orthogonal du plan d'origine O.

À tout réel a, on fait correspondre la droite L_a d'équation y = ax.



(ne rien écrire sur ce graphique)

1°) On note A le point d'intersection de $\mathcal C$ et de L_a autre que O lorsque $a \neq 1$. Exprimer l'abscisse de A en fonction de a .	1°) Vérifier que la fonction $F_a: x \mapsto 2(x+a-2)e^{\frac{x}{2}}$ est une primitive de f_a sur \mathbb{R} .	
(une seule égalité)		
2°) Dans cette question, on suppose que $0 \le a < 1$. Exprimer en fonction de a l'aire $\mathcal A$ du domaine compris entre la courbe $\mathcal C$ et la droite L_a (en unité d'aire).		
(une seule égalité)	2°) Exprimer en fonction de a l'aire du triangle mixtiligne \widehat{OAB} (en unité d'aire).	
3°) Question bonus (1 point)	(une seule égalité)	
On note \mathcal{D} le domaine compris entre la courbe \mathcal{C} et l'axe des abscisses. Déterminer la valeur exacte de a telle que la droite L_a partage le domaine \mathcal{D} en deux domaines de même aire	3°) Dans cette question, on prend $a = 2$. On suppose également que OI = 3 cm et que OJ = 2 cm. Déterminer l'aire du triangle mixtiligne \widehat{OAB} en cm ² (on donnera la valeur exacte).	
IV. (5 points : 1°) 2 points ; 2°) 2 points ; 3°) 1 point)	W (2 maints : 10) 1 maint : 20) 1 maint : 20) 1 maint)	
À tout réel $a>0$ on fait correspondre la fonction $f_a:x\mapsto (x+a)e^{\frac{x}{2}}$ définie sur $\mathbb R$ et on note $\mathcal C_a$ sa courbe	V. (3 points : 1°) 1 point ; 2°) 1 point ; 3°) 1 point)	
représentative dans un repère orthogonal (O, I, J) du plan. Soit A le point d'intersection de \mathcal{L}_a avec l'axe des abscisses et B le point d'intersection de \mathcal{L}_a avec l'axe des ordonnées.	On considère la fonction F définie sur \mathbb{R} par $F(x) = \int_0^x \ln(1 + e^{-t}) dt$ (on ne cherchera pas à calculer cette intégrale).	
	1°) À l'aide de la calculatrice, déterminer la valeur arrondie au millième de F(1).	
On donne ci-dessous la courbe \mathcal{C}_2 .		
\mathcal{C}_2	(un seul résultat sans égalité)	
В	2°) Calculer $F'(x)$.	
J	$\forall x \in \mathbb{R}$ (une seule égalité)	
A	3°) Déterminer la valeur exacte de F'(ln 2).	
0 1		
(ne rien écrire sur ce graphique)	(une seule égalité)	

(ne rien écrire sur ce graphique)

Corrigé du contrôle du 21-4-2017

On pose
$$I_1 = \int_{-1}^{1} (2x^3 - 3x^2 + 5x + 1) dx$$
 ; $I_2 = \int_{0}^{\frac{\pi}{4}} \frac{\sin x}{(1 - 2\cos x)^2} dx$; $I_3 = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^{\sin x}} dx$.

$$I_3 = \int_0^{\frac{\pi}{2}} \frac{\cos x}{1 + e^{\sin x}} dx.$$

Pour le calcul de I_3 , on observera que $\frac{\cos x}{1+e^{\sin x}} = \frac{\cos x \times e^{-\sin x}}{1+e^{-\sin x}}$ pour tout réel x.

Compléter les égalités suivantes puis détailler succinctement le calcul de chacune des intégrales en trois ou quatre

$$\mathbf{I}_1 = \mathbf{0}$$

$$I_2 = \frac{\sqrt{2}}{2}$$
 ou $I_2 = \frac{1}{\sqrt{2}}$; $I_3 = \ln \frac{2e}{e+1}$

$$I_3 = \ln \frac{2e}{e+}$$

$$I_{1} = \int_{-1}^{1} (2x^{3} - 3x^{2} + 5x + 1) dx$$

$$= \left[\frac{2}{4}x^{4} - x^{3} + \frac{5}{2}x^{2} + x \right]_{-1}^{1}$$

$$= \left[\frac{1}{2}x^{4} - x^{3} + \frac{5}{2}x^{2} + x \right]_{-1}^{1}$$

$$= \left(\frac{1}{2} + 1 + \frac{5}{2} + 1 \right) - \left(\frac{1}{2} + 1 + \frac{5}{2} + 1 \right)$$

$$= 0$$

$$= \left[-\frac{1}{2} \times \frac{1}{1 - 2\cos x} \right]_{0}^{\frac{\pi}{4}}$$

$$= -\frac{1}{2} \left(\frac{1}{1 - 2\cos \frac{\pi}{4}} - \frac{1}{1 - 2\cos 0} \right)$$

$$= -\frac{1}{2} \left(\frac{1}{1 - 2 \times \frac{\sqrt{2}}{2}} - \frac{1}{1 - 2} \right)$$

$$= -\frac{1}{2} \left(\frac{1}{1 - \sqrt{2}} + 1 \right)$$

$$= -\frac{1}{2} \left(\frac{1 \times (1 + \sqrt{2})}{(1 - \sqrt{2}) \times (1 + \sqrt{2})} + 1 \right)$$

$$= -\frac{1}{2} \left(\frac{1 + \sqrt{2}}{-1} + 1 \right)$$

$$= -\frac{1}{2} \left(-1 - \sqrt{2} + 1 \right)$$

$$= \frac{\sqrt{2}}{2}$$

 $I_{2} = \int_{0}^{\frac{\pi}{4}} \frac{\sin x}{(1 - 2\cos x)^{2}} dx$

$$I_{3} = \int_{0}^{\frac{\pi}{2}} \frac{\cos x}{1 + e^{\sin x}} dx$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{\cos x \times e^{-\sin x}}{1 + e^{-\sin x}} dx$$

$$= \left[-\ln\left|1 + e^{-\sin x}\right| \right]_{0}^{\frac{\pi}{2}}$$

$$= \left[-\ln\left(1 + e^{-\sin x}\right) \right]_{0}^{\frac{\pi}{2}}$$

$$= -\ln\left(1 + e^{-1}\right) + \ln 2$$

$$= \ln\frac{2}{1 + e^{-1}}$$

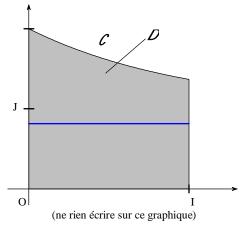
$$= \ln\frac{2}{1 + \frac{1}{e}}$$

On vérifie les résultats grâce à commande de calculs d'intégrales sur la calculatrice.

II.

 $=\ln\frac{2e}{e+1}$

On considère la fonction $f: x \mapsto 1 + e^{-x}$ définie sur \mathbb{R} et on note \mathcal{C} sa courbe représentative dans un repère orthogonal (O, I, J) du plan. On considère le domaine \mathcal{D} du plan compris d'une part entre l'axe des abscisses et la courbe \mathcal{L} , d'autre part entre les droites d'équations x = 0 et x = 1. La courbe \mathcal{L} et le domaine \mathcal{L} sont représentés cidessous.



On se propose de partager le domaine \mathcal{D} en deux domaines de même aire par la droite d'équation y = a où a est un réel compris entre 0 et 1.

Déterminer la valeur exacte du réel a.

$$a = 1 - \frac{1}{2e}$$
 (une seule égalité)

Comme la fonction f est positive sur l'intervalle [0;1], l'aire de \mathcal{D} (domaine sous la courbe \mathcal{E} sur l'intervalle [0;1]) est donnée en unité d'aire par $\int_{0}^{1} f(x) dx = 2 - \frac{1}{e}$.

Comme $0 \le a \le 1$, le domaine $\boldsymbol{\mathcal{D}}$ est partagé en deux domaines : un rectangle et un autre domaine.

L'un des côtés du rectangle est le segment [OI]. Le côté parallèle à ce côté est le segment tracé en bleu sur le graphique.

L'aire du rectangle est $\mathcal{A}=1\times a=a$ (en unité d'aire). On applique la formule aire d'un rectangle = longueur \times largeur.

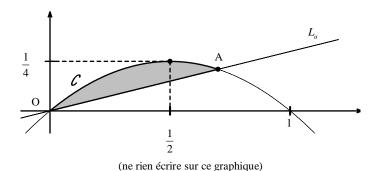
On cherche a pour que le domaine \mathcal{D} soit partagé en deux domaines de même aire. Pour cela, l'aire du rectangle doit être égale à la moitié de l'aire de \mathcal{D} .

On doit donc avoir
$$a = \frac{2 - \frac{1}{e}}{2} = \frac{2}{2} - \frac{\frac{1}{e}}{2} = 1 - \frac{1}{2e}$$
.

III.

On considère la fonction $f: x \mapsto x - x^2$ définie sur \mathbb{R} et on note \mathcal{C} sa courbe représentative dans un repère orthogonal du plan d'origine O.

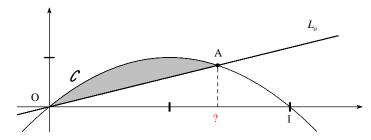
À tout réel a, on fait correspondre la droite L_a d'équation y = ax.



1°) On note A le point d'intersection de \mathcal{C} et de L_a autre que O lorsque $a \neq 1$.

Exprimer l'abscisse de A en fonction de a.

$$x_A = 1 - a$$
 (une seule égalité)



Les abscisses des points d'intersection de \mathcal{L} et de L_a sont les solutions de l'équation f(x) = ax (1).

(1)
$$\Leftrightarrow x - x^2 = ax$$

 $\Leftrightarrow (1-a)x - x^2 = 0$
 $\Leftrightarrow x[(1-a)-x] = 0$
 $\Leftrightarrow x = 0 \text{ ou } (1-a)-x = 0$
 $\Leftrightarrow x = 0 \text{ ou } x = 1-a$

2°) Dans cette question, on suppose que $0 \le a < 1$.

Exprimer en fonction de a l'aire \mathcal{A} du domaine compris entre la courbe \mathcal{C} et la droite L_a (en unité d'aire).

$$\mathbf{A} = \frac{(1-a)^3}{6}$$
 (une seule égalité)

L'aire ${\cal A}$ du domaine compris entre la courbe ${\cal C}$ et la droite L_a est donnée (en unité d'aire) par l'intégrale

$$I = \int_{0}^{1-a} \left[f(x) - ax \right] dx$$

$$= \int_{0}^{1-a} \left(x - x^{2} - ax \right) dx$$

$$= \int_{0}^{1-a} \left((1-a)x - x^{2} \right) dx$$

$$= \left[(1-a)\frac{x^{2}}{a^{2}} - \frac{x^{3}}{a^{2}} \right]^{1-a}$$

$$= \left[\left(1 - a \right) \frac{x^2}{2} - \frac{x^3}{3} \right]_0^{1 - a}$$

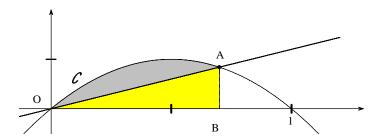
$$= \left[(1-a) \times \frac{(1-a)^2}{2} - \frac{(1-a)^3}{3} \right] - 0$$

$$=\frac{(1-a)^3}{2} - \frac{(1-a)^3}{3}$$

$$=\frac{\left(1-a\right)^3}{6}$$

Autre méthode:

 \mathcal{A} = aire sous la courbe sur l'intervalle [0;1-a] – aire du triangle OAB avec B(1-a;0)



3°) Question bonus

On note \mathcal{D} le domaine compris entre la courbe \mathcal{E} et l'axe des abscisses. Déterminer la valeur exacte de a telle que la droite L_a partage le domaine \mathcal{D} en deux domaines de même aire.

$$a = 1 - \frac{1}{\sqrt[3]{2}}$$
 (une seule égalité)

L'aire du domaine \mathcal{D} (en unité d'aire) est donnée par $\int_{-1}^{1} (x-x^2) dx = \frac{1}{6}$.

On cherche *a* tel que $\mathbf{A} = \frac{1}{2} \times \frac{1}{6}$ (1).

$$(1) \Leftrightarrow \frac{(1-a)^3}{6} = \frac{1}{2} \times \frac{1}{6}$$

$$\Leftrightarrow (1-a)^3 = \frac{1}{2}$$

$$\Leftrightarrow 1 - a = \sqrt[3]{\frac{1}{2}}$$

$$\Leftrightarrow 1 - a = \frac{\sqrt[3]{1}}{\sqrt[3]{2}}$$

$$\Leftrightarrow 1-a = \frac{1}{\sqrt[3]{2}}$$

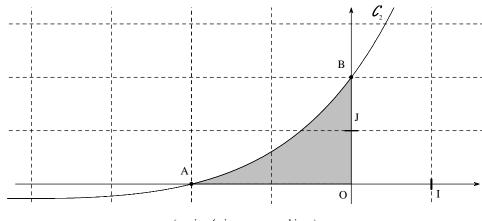
$$\Leftrightarrow a = 1 - \frac{1}{\sqrt[3]{2}}$$

IV.

À tout réel a > 0 on fait correspondre la fonction $f_a : x \mapsto (x+a)e^{\frac{1}{2}}$ définie sur \mathbb{R} et on note \mathcal{L}_a sa courbe représentative dans un repère orthogonal (O, I, J) du plan.

Soit A le point d'intersection de \mathcal{L}_a avec l'axe des abscisses et B le point d'intersection de \mathcal{L}_a avec l'axe des ordonnées.

On donne ci-dessous la courbe \mathcal{L}_2 .



(ne rien écrire sur ce graphique)

1°) Vérifier que la fonction $F_a: x \mapsto 2(x+a-2)e^{\frac{x}{2}}$ est une primitive de f_a sur \mathbb{R} .

$$\forall x \in \mathbb{R} \quad F'_{a}(x) = 2\left[1 \times e^{\frac{x}{2}} + (x+a-2) \times \frac{1}{2} \times e^{\frac{x}{2}}\right]$$

$$= 2\left[e^{\frac{x}{2}} + \frac{1}{2}(x+a-2) \times e^{\frac{x}{2}}\right]$$

$$= 2\left(1 + \frac{x+a-2}{2}\right)e^{\frac{x}{2}}$$

$$= 2 \times \frac{2 + x + a - 2}{2} \times e^{\frac{x}{2}}$$

$$= 2 \times \frac{x + a}{2} \times e^{\frac{x}{2}}$$

$$= (x+a)e^{\frac{x}{2}}$$

$$= f_{a}(x)$$

On en déduit que F_a est une primitive de f_a sur \mathbb{R} .

2°) Exprimer en fonction de a l'aire du triangle mixtiligne \widehat{OAB} (en unité d'aire).

$$A_{\widehat{OAB}} = 2(a-2) + 4e^{-\frac{a}{2}}$$
 (une seule égalité)

On commence par déterminer l'abscisse de A. On résout donc l'équation $f_a(x) = 0$ (1).

(1)
$$\Leftrightarrow (x+a)e^{\frac{a}{2}} = 0$$

 $\Leftrightarrow x+a=0 \text{ ou } e^{\frac{x}{2}} = 0 \text{ (impossible)}$
 $\Leftrightarrow x=-a$

Le point A a donc pour abscisse -a.

Par ailleurs, B a pour abscisse 0.

$$\mathcal{A}_{\widehat{OAB}} = \int_{-a}^{0} f_a(x) dx$$

$$= \left[F_a(x) \right]_{-a}^{0}$$

$$= F_a(0) - F_a(-a)$$

On reprend l'expression de F_a.

$$F_a(0) = 2(0+a-2)e^{\frac{0}{2}} = 2(a-2)$$

$$F_a(-a) = 2(\sqrt{a} + \alpha - 2)e^{-\frac{a}{2}} = -4e^{-\frac{a}{2}}$$
On en déduit que $\mathcal{A}_{\overline{DAB}} = 2(a-2) + 4e^{-\frac{a}{2}}$.

3°) Dans cette question, on prend a = 2. On suppose également que OI = 3 cm et que OJ = 2 cm. Déterminer l'aire du triangle mixtiligne \widehat{OAB} en cm² (on donnera la valeur exacte).

$$A_{\widehat{OAB}} = \frac{24}{e} \text{ cm}^2$$

On applique le résultat de la question précédente pour a = 2.

$$A_{\overline{OAB}} = 2 \times (2-2) + 4e^{-\frac{2}{2}}$$
 u. a. donc $A_{\overline{OAB}} = 4e^{-1}$ u. a. soit $A_{\overline{OAB}} = \frac{4}{e}$ u.a.

Or 1 u. a. = aire du rectangle OIJK = OI × OJ = $(2 \text{ cm}) \times (3 \text{ cm}) = 6 \text{ cm}^2$.

On multiplie donc le résultat précédent par 6.

Donc
$$A_{\widehat{OAB}} = \frac{24}{e} \text{ cm}^2$$
.

V.

On considère la fonction F définie sur \mathbb{R} par $F(x) = \int_0^x \ln(1 + e^{-t}) dt$ (on ne cherchera pas à calculer cette intégrale).

1°) À l'aide de la calculatrice, déterminer la valeur arrondie au millième de F(1).

0,484 (un seul résultat sans égalité)

$$F(1) = \int_0^1 \ln(1 + e^{-t}) dt$$

 2°) Calculer F'(x).

$$\forall x \in \mathbb{R}$$
 $F'(x) = \ln(1 + e^{-x})$ (une seule égalité)

Il s'agit d'une propriété du cours.

3°) Déterminer la valeur exacte de F'(ln 2).

$$F'(\ln 2) = \ln \frac{3}{2}$$
 (une seule égalité)

$$F'(\ln 2) = \ln\left(1 + e^{-\ln 2}\right)$$
$$= \ln\left(1 + e^{\ln\frac{1}{2}}\right)$$
$$= \ln\left(1 + \frac{1}{2}\right)$$

$$= \ln \frac{3}{2}$$