TS1

Contrôle du vendredi 10 mars 2017 (50 minutes)

I. (7 points : 1°) 1 point ; 2°) 2 points ; 3°) 2 points ; 4°) 2 points) À tout réel a strictement positif on associe la fonction $f_a: x \mapsto \ln(a + e^{-x})$ définie sur \mathbb{R} . On note \mathscr{C}_a sa courbe représentative dans le plan muni d'un repère (O, \vec{i}, \vec{j}) . 1°) Justifier que la fonction f_a est strictement décroissante sur \mathbb{R} . Seule une réponse correctement justifiée sera prise en compte. 2°) Compléter les égalités de limites suivantes : $\lim_{x \to +\infty} f_a(x) = \dots$ et $\lim_{x \to -\infty} f_a(x) = \dots$. Justifier sur les lignes ci-dessous le résultat de la première limite. Seule une réponse correctement justifiée sera prise en compte. Interpréter graphiquement le résultat de la limite de f_a en $+\infty$ à l'aide d'une phrase correctement rédigée.

3°) On note Δ la droite d'équation $x + y = 0$. Déterminer par le calcul la position de \mathscr{C}_a par rapport à Δ . Seule une démarche correctement rédigée sera prise en compte. On pourra utiliser, après l'avoir démontré, le résultat suivant : pour tout réel x on a $f_a(x) + x = \ln(1 + ae^x)$.
4°) Quel est le coefficient directeur de la tangente à \mathscr{C}_a au point d'abscisse $-\ln a$?

II. (2 points)

On considère la fonction $f: x \mapsto \ln(2x+1) - \ln x$ définie sur \mathbb{R}_+^* .

Déterminer $\lim_{x \to +\infty} f(x)$ en détaillant toute la démarche.

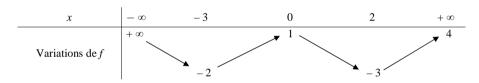
.....

.....

.....

III. (4 points : 1°) 2 points ; 2°) 2 points)

On considère une fonction f définie sur \mathbb{R} dont le tableau de variations est donné ci-dessous.



1°) Compléter sans justifier les phrases suivantes en écrivant chaque fois une seule réponse.

- Lorsque x décrit l'intervalle $]-\infty;0]$, f(x) décrit l'intervalle
- Lorsque x décrit l'intervalle $[-3; +\infty[$, f(x) décrit l'intervalle
- 2°) On considère la fonction $g: x \mapsto f(e^{-x})$ définie sur \mathbb{R} .

Compléter sans justifier les égalités de limites suivantes : $\lim_{x \to +\infty} g(x) = \dots$ et $\lim_{x \to -\infty} g(x) = \dots$

IV. (2 points : 1°) 1 point ; 2°) 1 point)

1°) On considère la fonction $f: x \mapsto \cos x \times e^{2x}$ définie sur \mathbb{R} .

Démontrer que la fonction $F: x \mapsto \frac{2\cos x + \sin x}{5} \times e^{2x}$ est une primitive de f sur \mathbb{R} .

Il est demandé de présenter toutes les étapes de calcul.

On présentera les calculs en colonne et on pensera à écrire « $\forall x \in \mathbb{R}$ » sur la première ligne.

2°) Proposer sans justifier l'expression d'une primitive G de la fonction $g: x \mapsto \sin x \times e^{2x}$ définie sur \mathbb{R} .

V. (1 point)

Soit f une fonction dérivable sur \mathbb{R}_+^* . On considère la fonction $g: x \mapsto f\left(e^{-x}\right)$ définie sur \mathbb{R} . Calculer g'(x).

$$\forall x \in \mathbb{R}$$
 $g'(x) = \dots$

VI. (4 points : 1°) 1 point ; 2°) 1 point ; 3°) 2 points)

1°) Déterminer sans justifier une écriture exponentielle du nombre complexe $z = i\sqrt{3} - 1$.

2°) Soit z' le nombre complexe de module 4 et d'argument $\frac{5\pi}{4}$. Déterminer l'écriture algébrique de z'.

3°) On pose $Z = \frac{z}{z'}$. Compléter sans justifier les phrases suivantes :

Corrigé du contrôle du 10-3-2017

I.

À tout réel a strictement positif on associe la fonction $f_a: x \mapsto \ln(a + e^{-x})$ définie sur \mathbb{R} . On note \mathscr{C}_a sa courbe représentative dans le plan muni d'un repère (O, \vec{i}, \vec{j}) .

1°) Justifier que la fonction f_a est strictement décroissante sur \mathbb{R} .

Seule une réponse correctement justifiée sera prise en compte.

$$\forall x \in \mathbb{R} \quad f_a'(x) = -\frac{e^{-x}}{a + e^{-x}}$$

Comme $\forall x \in \mathbb{R} \ e^{-x} > 0$ et que a > 0, on en déduit que $\forall x \in \mathbb{R} \ f_a'(x) < 0$.

Ainsi, la fonction f_{\cdot} est strictement décroissante sur \mathbb{R} .

Autre méthode:

On utilise la méthode directe par comparaison d'images.

Soit x_1 et x_2 deux réels quelconques tels que $x_1 < x_2$.

On procède par inégalités successives pour comparer $f_a(x_1)$ et $f_a(x_2)$.

Tout d'abord, on a $-x_1 > -x_2$.

Donc $e^{-x_1} > e^{-x_2}$ car la fonction exponentielle est strictement croissante sur \mathbb{R} .

D'où
$$a + e^{-x_1} > a + e^{-x_2}$$
.

Les deux membres de l'inégalité sont strictement positifs et la fonction logarithme népérien est strictement croissante sur \mathbb{R}^* .

On en déduit que $\ln(a+e^{-x_1}) > \ln(a+e^{-x_2})$ soit $f_a(x_1) > f_a(x_2)$.

Par conséquent, la fonction f_a est strictement décroissante sur \mathbb{R} .

2°) Compléter les égalités de limites suivantes : $\lim_{x \to +\infty} f_a(x) = \ln a$ et $\lim_{x \to -\infty} f_a(x) = +\infty$.

Justifier sur les lignes ci-dessous le résultat de la première limite.

Seule une réponse correctement justifiée sera prise en compte.

On a $\lim_{x \to +\infty} e^{-x} = 0$ (limite de composée très simple qui provient de la limite de l'exponentielle en $-\infty$).

Par conséquent, $\lim_{x \to +\infty} (a + e^{-x}) = a$.

$$\lim_{x \to +\infty} \underbrace{\left(a + e^{-x}\right)}_{X} = a$$

 $\lim_{X \to a} \ln X = \ln a \text{ car } a > 0 \text{ par hypothèse dans tout l'exercice}$

donc par limite d'une composée, $\lim_{x \to +\infty} f_a(x) = \ln a$.

Interpréter graphiquement le résultat de la limite de f_a en $+\infty$ à l'aide d'une phrase correctement rédigée.

La courbe \mathcal{C}_a admet la droite d'équation $y = \ln a$ pour asymptote horizontale en $+ \infty$.

L'interprétation graphique a été ratée et a été comptée sur 0 point.

On peut vérifier ce résultat en traçant différentes courbes \mathscr{C}_{ϵ} sur la calculatrice.

3°) On note Δ la droite d'équation x+y=0. Déterminer par le calcul la position de \mathscr{C}_a par rapport à Δ . Seule une démarche correctement rédigée sera prise en compte.

On pourra utiliser, après l'avoir démontré, le résultat suivant : pour tout réel x on a $f_a(x) + x = \ln(1 + ae^x)$.

 Δ a pour équation réduite y = -x.

On doit étudier le signe de $f_a(x) + x$.

On commence par transformer cette expression pour pouvoir en déterminer son signe facilement.

$$\forall x \in \mathbb{R} \quad f_a(x) + x = \ln(a + e^{-x}) + \ln e^x$$

$$= \ln\left[\left(a + e^{-x}\right) \times e^x\right]$$

$$= \ln\left(ae^x + e^{-x} \times e^x\right)$$

$$= \ln\left(ae^x + e^{x-x}\right)$$

$$= \ln\left(ae^x + e^0\right)$$

$$= \ln\left(ae^x + 1\right)$$

 $\forall x \in \mathbb{R} \quad e^x > 0 \text{ et } a > 0 \text{ donc } \forall x \in \mathbb{R} \quad ae^x + 1 > 1.$

Donc $\forall x \in \mathbb{R}$ $f_a(x) + x > 0$ soit $\forall x \in \mathbb{R}$ $f_a(x) > -x$.

On en déduit que \mathscr{C}_a est au-dessus de la droite Δ .

 4°) Quel est le coefficient directeur de la tangente à \mathscr{C}_a au point d'abscisse $-\ln a$?

$$\forall x \in \mathbb{R} \quad f_a'(x) = -\frac{e^{-x}}{a + e^{-x}}$$

La tangente à \mathscr{C}_a au point d'abscisse $-\ln a$ a pour coefficient directeur $f_a'(-\ln a)$.

$$f_a'(-\ln a) = -\frac{e^{-(-\ln a)}}{a + e^{-(-\ln a)}}$$
$$= -\frac{e^{\ln a}}{a + e^{\ln a}}$$
$$= -\frac{a}{a + a}$$
$$= -\frac{1}{2}$$

Il est remarquable de constater que le résultat ne dépend pas de a.

II.

On considère la fonction $f: x \mapsto \ln(2x+1) - \ln x$ définie sur \mathbb{R}_{+}^{*} .

Déterminer $\lim_{x \to +\infty} f(x)$ en détaillant toute la démarche.

En $+\infty$, on rencontre une forme indéterminée du type « $\infty - \infty$ ».

Pour lever l'indétermination, on effectue une réécriture.

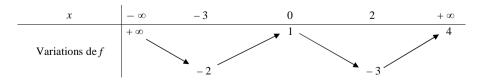
$$\forall x \in \mathbb{R}^*_+ \quad f(x) = \ln \frac{2x+1}{x}$$
$$= \ln \left(2 + \frac{1}{x}\right)$$

$$\lim_{x \to +\infty} \left(2 + \frac{1}{x} \right) = 2$$

$$\lim_{x \to 2} \ln x = \ln 2$$
donc par limite d'une composée $\lim_{x \to +\infty} f(x) = \ln 2$.

III.

On considère une fonction f définie sur \mathbb{R} dont le tableau de variations est donné ci-dessous.



1°) Compléter sans justifier les phrases suivantes en écrivant chaque fois une seule réponse.

- Lorsque x décrit l'intervalle $]-\infty;0], f(x)$ décrit l'intervalle $[-2;+\infty[$.
- Lorsque x décrit l'intervalle $[-3; +\infty[$, f(x) décrit l'intervalle [-3; 4[.

Il faut bien faire attention à ouvrir ou fermer les bornes des intervalles.

2°) On considère la fonction $g: x \mapsto f(e^{-x})$ définie sur \mathbb{R} .

Compléter sans justifier les égalités de limites suivantes : $\lim_{x \to +\infty} g(x) = 1$ et $\lim_{x \to -\infty} g(x) = 4$.

On utilise la propriété de limite d'une composée pour trouver ces deux limites.

IV.

1°) On considère la fonction $f: x \mapsto \cos x \times e^{2x}$ définie sur \mathbb{R} .

Démontrer que la fonction $F: x \mapsto \frac{2\cos x + \sin x}{5} \times e^{2x}$ est une primitive de $f \operatorname{sur} \mathbb{R}$.

Il est demandé de présenter toutes les étapes de calcul.

On présentera les calculs en colonne et on pensera à écrire « $\forall x \in \mathbb{R}$ » sur la première ligne.

$$\forall x \in \mathbb{R} \quad F'(x) = \frac{1}{5} \left[\left(-2\sin x + \cos x \right) \times e^{2x} + \left(2\cos x + \sin x \right) \times 2e^{2x} \right]$$
$$= \frac{-2\sin x + \cos x + 4\cos x + 2\sin x}{5} \times e^{2x}$$
$$= \cos x \times e^{2x}$$
$$= f(x)$$

On en déduit que F est une primitive de f sur \mathbb{R} .

2°) Proposer sans justifier l'expression d'une primitive G de la fonction $g: x \mapsto \sin x \times e^{2x}$ définie sur \mathbb{R} .

$$G(x) = \frac{2\sin x - \cos x}{5} \times e^{2x} \quad \text{(une seule réponse)}$$

V.

Soit f une fonction dérivable sur \mathbb{R}_+^* . On considère la fonction $g: x \mapsto f\left(e^{-x}\right)$ définie sur \mathbb{R} . Calculer g'(x).

$$\forall x \in \mathbb{R}$$
 $g'(x) = -e^{-x} \times f'(e^{-x})$

On applique la formule de dérivation d'une composée.

1°) Déterminer sans justifier une écriture exponentielle du nombre complexe $z = i\sqrt{3} - 1$.

$$z = 2e^{i\frac{2\pi}{3}}$$

On peut utiliser la calculatrice pour obtenir ce résultat.

2°) Soit z' le nombre complexe de module 4 et d'argument $\frac{5\pi}{4}$. Déterminer l'écriture algébrique de z'.

$$z' = -2\sqrt{2} - 2i\sqrt{2}$$

On peut utiliser la calculatrice pour obtenir ce résultat.

On a:
$$z' = 4e^{\frac{5\pi}{4}}$$
 ce qui donne $z' = 4\left(\cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4}\right)$.

 $\cos \frac{5\pi}{4} = -\frac{\sqrt{2}}{2}$ et $\sin \frac{5\pi}{4} = -\frac{\sqrt{2}}{2}$ (on peut utiliser un cercle trigonométrique pour ne pas se tromper).

On obtient immédiatement le résultat : $z' = -2\sqrt{2} - 2i\sqrt{2}$.

3°) On pose $Z = \frac{z}{z'}$. Compléter sans justifier les phrases suivantes :

Le module de Z est égal à $\frac{1}{2}$. Un argument de Z est égal à $-\frac{7\pi}{12}$

1 ère méthode :

On applique les propriétés du module et de l'argument.

On a:
$$|Z| = \frac{|z|}{|z'|}$$
 soit $|Z| = \frac{2}{4} = \frac{1}{2}$.

On applique la formule $\arg Z = \arg z - \arg z'$ (2π). Donc $\arg Z = \frac{2\pi}{3} - \frac{5\pi}{4}$ (2π) soit $\arg Z = -\frac{7\pi}{12}$ (2π).

On peut aussi donner $2\pi - \frac{7\pi}{12} = \frac{17\pi}{12}$ pour argument de Z.

2e méthode:

On utilise la forme exponentielle de z et z'.

$$Z = \frac{2e^{\frac{1}{3}}}{4e^{\frac{5\pi}{4}}} = \frac{1}{2}e^{i\left(\frac{2\pi}{3} - \frac{5\pi}{4}\right)} = \frac{1}{2}e^{-i\frac{7\pi}{12}}$$