TS1

Contrôle du mardi 8 décembre 2015 (50 minutes)

IV. (2 points)

On rappelle le théorème suivant :

Prénom et nom: Note: / 20	Soit (u_n) , (v_n) , (w_n) trois suites numériques définies sur \mathbb{N} telles que pour tout entier naturel n , on ait : $u_n \leq v_n \leq w_n$.
I. (2 points)	Si $\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = \mathbf{I}$ où \mathbf{I} est un réel, alors $\lim_{n \to +\infty} v_n = \mathbf{I}$.
On considère la suite (u_n) définie sur \mathbb{N} par $u_n = (\sqrt{3} - 2)^n$. Déterminer en justifiant la limite de (u_n) .	On donne ci-dessous dans le désordre les éléments de la démonstration de ce théorème.
On répondra en une ou deux lignes.	① Comme ceci est vrai pour tout intervalle ouvert I contenant I, on en déduit que $\lim_{n \to +\infty} v_n = I$.
	② On note N le plus grand des entiers N_1 et N_2 .
	③ Comme $\lim_{n \to +\infty} w_n = \mathbf{I}$ et que I est un intervalle ouvert contenant \mathbf{I} , on peut trouver un entier naturel N_2 tel que si
	$n \geqslant N_2$, alors $w_n \in I$.
	④ On choisit un intervalle ouvert I quelconque contenant I.
	\bigcirc Si $n \geqslant N$, alors $u_n \in I$ et $w_n \in I$.
II. (2 points)	(b) Or pour tout entier naturel n , on a : $u_n \le v_n \le w_n$.
	\bigcirc Comme $\lim_{n \to +\infty} u_n = \mathbf{I}$ et que I est un intervalle ouvert contenant \mathbf{I} , on peut trouver un entier naturel N_1 tel que si
On considère la suite (u_n) définie sur \mathbb{N} par $u_n = \frac{1-n^2}{(2n+1)^2}$. Déterminer en justifiant la limite de (u_n) .	$n \geqslant N_1$, alors $u_n \in I$.
$(2n+1)^2$	$\textcircled{\$}$ Donc si $n \geqslant N$, alors $v_n \in I$.
	Remettre la démonstration dans l'ordre (sans justifier).
	V. (1 point)
	On considère la suite (u_n) définie sur \mathbb{N}^* par $u_n = \mathbb{E}\left(\frac{10}{n}\right)$. Démontrer que la suite (u_n) est stationnaire.
	On répondra en quatre lignes au maximum.
III. (1 point)	
Soit (u_n) une suite définie sur \mathbb{N} qui converge vers 0 et dont tous les termes sont strictement négatifs.	
Déterminer sans justifier la limite de la suite (v_n) définie sur \mathbb{N} par $v_n = -\frac{2}{u_n}$.	
$\lim v_n = \dots$	
$n \to +\infty$	

VI. (3 points)

Soit (u_n) une suite définie sur \mathbb{N} .

Dans chaque cas, on donne une inégalité vérifiée quelle que soit l'entier naturel n.

Indiquer dans la case de droite la limite de (u_n) lorsqu'il est possible de la déterminer. Sinon, ne rien écrire.

$u_n \geqslant 2-3n$	
$1 - \frac{2}{n+1} \leqslant u_n \leqslant 1 + \frac{2}{n+1}$	
$u_n \leqslant \frac{1}{\left(n+1\right)^2}$	
$\frac{1}{n+1} \leqslant u_n \leqslant n+1$	
$u_n - \sqrt{n} \geqslant 0$	
$3 - 2n \leqslant u_n \leqslant 3 + 2n$	

VII. (3 points : 1°) 1 point ; 2°) 2 points)

Soit (u_n) la suite géométrique définie sur \mathbb{N}^* de premier terme $u_1 = 5$ et de raison $-\frac{1}{2}$. Pour tout entier naturel $n \ge 1$, on pose $S_n = u_1 + u_2 + ... + u_n$.

1°) Déterminer une expression simplifiée de S_n en fonction de n (calculs au brouillon).

 $S_n = \dots$ (un seul résultat)

	$\lim_{n\to+\infty} S_n$. Justifier			
		 	• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •		 •	• • • • • • • • • • • • • • • • • • • •	

VIII. (6 points: 1°) 1 point; 2°) 1 point + 1 point; 3°) 1 point; 4°) 1 point; 5°) 1 point)

Pour tout entier naturel n non nul, on pose $S_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} = \sum_{k=1}^{k=n} \frac{1}{n+k}$.

1°) Calculer $S_3 = \sum_{k=1}^{k=3} \frac{1}{3+k}$ « à la main » au brouillon et donner le résultat sous la forme d'une fraction irréductible.

$$S_3 = \dots$$

3°) On admet le résultat suivant que l'on peut démontrer aisément :

pour tout entier naturel $n \ge 1$, on a : $S_{n+1} - S_n = \frac{1}{n + (n+2)} + \frac{1}{n + (n+1)} - \frac{1}{n+1} = \frac{1}{(2n+1)(2n+2)}$.

À l'aide de ce résultat, déterminer le sens de variation de la suite (S_n) . Répondre en deux lignes.

4°) Démontrer que (S_n) converge. Répondre en deux lignes.

.....

5°) On admet que $\lim_{n \to +\infty} S_n = \ln 2$.

À l'aide de la calculatrice, déterminer le plus petit entier naturel n tel que $\ln 2 - S_n \le 0.01$. Répondre sans justifier.

..... (une valeur sans égalité)

Corrigé du contrôle du 8-12-2015

T.

On considère la suite (u_n) définie sur \mathbb{N} par $u_n = (\sqrt{3} - 2)^n$. Déterminer en justifiant la limite de (u_n) . On répondra en une ou deux lignes.

On a :
$$\sqrt{3} = 1,732...$$
 donc $-1 < \sqrt{3} - 2 < 1$.
Par conséquent, $\lim_{n \to +\infty} u_n = 0$.

II.

On considère la suite (u_n) définie sur \mathbb{N} par $u_n = \frac{1-n^2}{\left(2n+1\right)^2}$. Déterminer en justifiant la limite de (u_n) .

$$\lim_{n \to +\infty} (1 - n^2) = -\infty$$

$$\lim_{n \to +\infty} (2n + 1)^2 = +\infty$$
donc on rencontre une forme indéterminée du type "\frac{\infty}{\infty}".

$$\forall n \in \mathbb{N}$$
 $u_n = \frac{1 - n^2}{4n^2 + 4n + 1}$ donc $\forall n \in \mathbb{N}^*$ $u_n = \frac{\frac{1}{n^2} - 1}{4 + \frac{4}{n} + \frac{1}{n^2}}$.

$$\lim_{n \to +\infty} \left(\frac{1}{n^2} - 1 \right) = -1$$

$$\lim_{n \to +\infty} \left(4 + \frac{4}{n} + \frac{1}{n^2} \right) = 4$$
donc par limite d'un quotient, $\lim_{n \to +\infty} u_n = -\frac{1}{4}$.

III.

Soit (u_n) une suite définie sur \mathbb{N} qui converge vers 0 et dont tous les termes sont strictement négatifs.

Déterminer sans justifier la limite de la suite (v_n) définie sur \mathbb{N} par $v_n = -\frac{2}{u_n}$.

$$\lim_{n \to +\infty} v_n = +\infty$$

$$\lim_{n \to +\infty} (-2) = -2$$

$$\lim_{n \to +\infty} u_n = 0^-$$
donc par limite d'un quotient, on a :
$$\lim_{n \to +\infty} v_n = +\infty$$
.

IV.

On rappelle le théorème suivant :

Soit (u_n) , (v_n) , (w_n) trois suites numériques définies sur \mathbb{N} telles que pour tout entier naturel n, on ait : $u_n \leq v_n \leq w_n$.

Si
$$\lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = \mathbf{I}$$
 où \mathbf{I} est un réel, alors $\lim_{n \to +\infty} v_n = \mathbf{I}$.

On donne ci-dessous dans le désordre les éléments de la démonstration de ce théorème.

- ① Comme ceci est vrai pour tout intervalle ouvert I contenant I, on en déduit que $\lim_{n \to +\infty} v_n = I$.
- ② On note N le plus grand des entiers N_1 et N_2 .
- ③ Comme $\lim_{n \to +\infty} w_n = \mathbf{I}$ et que I est un intervalle ouvert contenant \mathbf{I} , on peut trouver un entier naturel N_2 tel que si $n \ge N_2$, alors $w_n \in \mathbf{I}$.
- ④ On choisit un intervalle ouvert I quelconque contenant I.
- \bigcirc Si $n \ge N$, alors $u_n \in I$ et $w_n \in I$.
- **6** Or pour tout entier naturel n, on a : $u_n \le v_n \le w_n$.
- ② Comme $\lim_{n \to +\infty} u_n = \mathbf{I}$ et que I est un intervalle ouvert contenant \mathbf{I} , on peut trouver un entier naturel N_1 tel que si $n \geqslant N_1$, alors $u_n \in \mathbf{I}$.
- **®** Donc si $n \ge N$, alors $v_n ∈ I$.

Remettre la démonstration dans l'ordre (sans justifier).

V.

On considère la suite (u_n) définie sur \mathbb{N}^* par $u_n = \mathbb{E}\left(\frac{10}{n}\right)$. Démontrer que la suite (u_n) est stationnaire. On répondra en quatre lignes au maximum.

On dit qu'une suite est stationnaire pour exprimer qu'elle est constante à partir d'un certain indice.

Afin d'avoir une idée du résultat, on peut commencer par calculer au brouillon les premiers termes de la suite.

$$u_1 = E\left(\frac{10}{1}\right) = E(10) = 10$$

$$u_2 = E\left(\frac{10}{2}\right) = E(5) = 5$$

$$u_3 = E\left(\frac{10}{3}\right) = 3 \text{ car } 3 \le \frac{10}{3} < 4 \text{ (en effet, on peut dire que } 3 \times 3 \le 10 < 3 \times 4 \text{ ou bien que } \frac{10}{3} = 3,333\underline{3}... \text{)}$$

$$u_4 = \mathbf{E}\left(\frac{10}{4}\right) = \mathbf{E}\left(\frac{5}{2}\right) = 2$$

$$u_5 = E\left(\frac{10}{5}\right) = E(2) = 2$$

$$u_6 = \mathbf{E}\left(\frac{10}{6}\right) = \mathbf{E}\left(\frac{5}{3}\right) = 1$$

$$u_7 = \mathbf{E}\left(\frac{10}{7}\right) = 1$$

$$u_8 = E\left(\frac{10}{8}\right) = 1$$

$$u_9 = \mathbf{E}\left(\frac{10}{9}\right) = 1$$

$$u_{10} = \mathbf{E}\left(\frac{10}{10}\right) = 1$$

$$u_{11} = \mathbf{E} \left(\frac{10}{11} \right) = 0$$

$$u_{12} = E\left(\frac{10}{12}\right) = 0$$

Plus rapidement, on peut aussi rentrer la suite dans la calculatrice en utilisant la fonction partie entière de la calculatrice (modèle TI : $\boxed{\text{math}} \rightarrow \text{NUM}$ (ou NBRE) \rightarrow choix 5).

Il semble que tous les termes de la suite soient égaux à 0 à partir de l'indice 11.

Nous allons démontrer que la suite (u_n) est stationnaire à partir de l'indice 11.

$$\forall n > 10 \quad 0 < \frac{10}{n} < 1 \text{ donc } \forall n > 10 \quad u_n = 0.$$

La suite (u_n) est donc stationnaire à partir de l'indice 11.

VI.

Soit (u_n) une suite définie sur \mathbb{N} .

Dans chaque cas, on donne une inégalité vérifiée quelle que soit l'entier naturel n.

Indiquer dans la case de droite la limite de (u_n) lorsqu'il est possible de la déterminer. Sinon, ne rien écrire.

$u_n \geqslant 2-3n$	
$1 - \frac{2}{n+1} \leqslant u_n \leqslant 1 + \frac{2}{n+1}$	$\lim_{n \to +\infty} u_n = 1$
$u_n \leqslant \frac{1}{\left(n+1\right)^2}$	
$\frac{1}{n+1} \leqslant u_n \leqslant n+1$	
$u_n - \sqrt{n} \geqslant 0$	$\lim_{n \to +\infty} u_n = +\infty$
$3 - 2n \leqslant u_n \leqslant 3 + 2n$	

- Dans le cas où $\forall n \in \mathbb{N}$ $u_n \ge 2-3n$, $\lim_{n \to +\infty} (2-3n) = -\infty$ et on ne peut rien déduire sur le comportement de la suite (u_n) .
- Dans le cas où $\forall n \in \mathbb{N}$ $1 \frac{2}{n+1} \leqslant u_n \leqslant 1 + \frac{2}{n+1}$, $\lim_{n \to +\infty} \left(1 \frac{2}{n+1}\right) = \lim_{n \to +\infty} \left(1 + \frac{2}{n+1}\right) = 1$ et on en déduit $\lim_{n \to +\infty} u_n = 1$ grâce au théorème des gendarmes.
- Dans le cas où $\forall n \in \mathbb{N}$ $u_n \le \frac{1}{\left(n+1\right)^2}$, $\lim_{n \to +\infty} \frac{1}{\left(n+1\right)^2} = 0$ et on ne peut rien déduire sur le comportement de la suite (u_n) .
- Dans le cas où $\forall n \in \mathbb{N}$ $\frac{1}{n+1} \leq u_n \leq n+1$, $\lim_{n \to +\infty} \frac{1}{n+1} = 0$ et $\lim_{n \to +\infty} (n+1) = +\infty$ on ne peut rien déduire sur le comportement de la suite (u_n) .
- Dans le cas où $\forall n \in \mathbb{N}$ $\frac{1}{n+1} \le u_n \le n+1$, $\lim_{n \to +\infty} (3-2n) = -\infty$ et $\lim_{n \to +\infty} (3+2n) = +\infty$ on ne peut rien déduire sur le comportement de la suite (u_n) .

VII.

Soit (u_n) la suite géométrique définie sur \mathbb{N}^* de premier terme $u_1 = 5$ et de raison $-\frac{1}{2}$.

Pour tout entier naturel $n \ge 1$, on pose $S_n = u_1 + u_2 + ... + u_n$.

1°) Déterminer une expression simplifiée de S_n en fonction de n (calculs au brouillon).

$$S_n = \frac{10}{3} \left[1 - \left(-\frac{1}{2} \right)^n \right]$$
 (un seul résultat)

2°) Déterminer $\lim_{n \to +\infty} S_n$. Justifier brièvement.

$$\lim_{n \to +\infty} \left(-\frac{1}{2} \right)^n = 0 \text{ car } -1 < -\frac{1}{2} < 1 \text{ donc } \lim_{n \to +\infty} S_n = \frac{10}{3}.$$

VIII.

Pour tout entier naturel *n* non nul, on pose $S_n = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{n+n} = \sum_{k=1}^{k=n} \frac{1}{n+k}$.

1°) Calculer $S_3 = \sum_{k=1}^{k=3} \frac{1}{3+k}$ « à la main » au brouillon et donner le résultat sous la forme d'une fraction irréductible.

$$S_3 = \frac{37}{60}$$

$$S_3 = \frac{1}{4} + \frac{1}{5} + \frac{1}{6} = \frac{15 + 12 + 10}{60} = \frac{37}{60}$$

2°) Démontrer que, pour tout entier naturel $n \ge 1$, on a : $S_n \le \frac{n}{n+1}$. En déduire que (S_n) est majorée.

On a:
$$S_n = \frac{1}{n+1} + \frac{1}{n+2} + ... + \frac{1}{n+n}$$
.

La somme comporte n termes. Le plus grand terme est égal à $\frac{1}{n+1}$.

Donc d'après le principe de majoration grossière, $\forall n \in \mathbb{N}^*$ $S_n \leq \frac{n}{n+1}$.

Or $\forall n \in \mathbb{N}^*$ $\frac{n}{n+1} \leqslant 1$ soit $\forall n \in \mathbb{N}^*$ $S_n \leqslant 1$.

On en déduit que la suite (S_n) est majorée (1 est un majorant).

On notera que l'on ne peut pas dire que $\frac{n}{n+1}$ est un majorant de S_n car un majorant ne doit pas dépendre de n (beaucoup d'élèves ont commis l'erreur).

3°) On admet le résultat suivant que l'on peut démontrer aisément :

pour tout entier naturel
$$n \ge 1$$
, on a : $S_{n+1} - S_n = \frac{1}{n + (n+2)} + \frac{1}{n + (n+1)} - \frac{1}{n+1} = \frac{1}{(2n+1)(2n+2)}$.

À l'aide de ce résultat, déterminer le sens de variation de la suite (S_n) . Répondre en deux lignes.

 $\forall n \in \mathbb{N}^*$ $S_{n+1} - S_n > 0$ donc la suite (S_n) est strictement croissante.

La quantification est essentielle pour pouvoir dire que la suite (S_n) est strictement croissante.

 4°) Démontrer que (S_n) converge. Répondre en deux lignes.

La suite (S_n) est croissante et majorée. Or toute suite croissante et majorée converge. Donc (S_n) converge.

5°) On admet que $\lim_{n \to +\infty} S_n = \ln 2$.

À l'aide de la calculatrice, déterminer le plus petit entier naturel n tel que $\ln 2 - S_n \le 0.01$. Répondre sans justifier.

25 (une valeur sans égalité)

On rentre la suite (S_n) dans la calculatrice.

Sur les modèles TI les plus récents, on tape : $u(n) = ln(2) - \sum_{K=1}^{n} (1/(n+K))$.

Sur les modèles TI les plus anciens, on tape : $u(n) = \ln 2 - \text{somme} \left(\text{suite} \left(1 / (n + K), K, 1, n \right) \right)$.