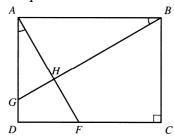
Géométrie élémentaire

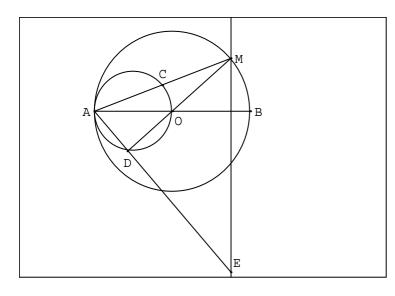
Exercice 1:

ABCD est un rectangle tel que $\widehat{DAF} = \widehat{ABG}$.



- 1) Prouver que $\widehat{FAB} + \widehat{ABG} = 90^{\circ}$.
- 2) En déduire que les droites (AF) et (BG) sont perpendiculaires.
- 3) Démontrer que le cercle de diamètre [GF] passe par H et D.

Exercice 2:



 Γ est un cercle de centre O de diamètre [AB]. Γ ' est le cercle de diamètre [AO].

M est un point de Γ distinct de A et de B.

Les droites (MA) et (MO) recoupent Γ 'respectivement en C et D.

On trace par M la droite d perpendiculaire à (AB) qui coupe (AD) en E.

- 1) Que représente O pour le triangle AME ? (justifier)
- 2) En déduire que O, C et E sont alignés.

Exercice 3:

(C) est un cercle de centre O, de rayon 4cm. [OA] et [OB] sont deux rayons perpendiculaires de (C). (C') est le demi-cercle de diamètre [AB] contenu dans (C).

M est un point de (C') distinct de A, B et O.

La droite (BM) recoupe (C) en N.

- 1) Faire une figure.
- 2) Démontrer que (C') passe par O.
- 3) Quelle est la nature du triangle AMB (justifier)?
- 4) Pourquoi $\widehat{ANB} = 45^{\circ}$?
- 5) Déduire des questions précédentes la nature du triangle AMN.

Correction:

Exercice 1:

1) Dans le rectangle, à l'aide des angles adjacents, on a :

$$\widehat{FAB} + \widehat{DAF} = 90^{\circ}$$
.

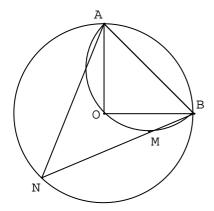
Or
$$\widehat{DAF} = \widehat{ABG}$$
, donc $\widehat{FAB} + \widehat{ABG} = 90^{\circ}$.

- 2) La somme des mesures des angles d'un triangle vaut 180° , donc dans ABH, $\widehat{AHB} = 180 (\widehat{FAB} + \widehat{ABG}) = 180 90 = 90^\circ$. D'où le résultat.
- 3) Un triangle rectangle est inscrit dans le cercle de diamètre son hypoténuse, donc les triangles GFH et GFD, rectangles respectivement en H et en D, sont inscrits dans le cercle de diamètre [GF].

Exercice 2:

- 1) d est perpendiculaire à (AB), donc (AB) est une hauteur du triangle AME;
 - Le triangle AOD est inscrit dans le cercle Γ 'avec un de ses côtés diamètre, il est donc rectangle en D; O, M et D sont alignés, donc (MD) est perpendiculaire à (AE). (MD) est une deuxième hauteur de AME.
 - Les hauteurs (MD) et (AB) se coupent en O qui est donc l'orthocentre du triangle AME.
- 2) (EO) est alors la troisième hauteur de AME, donc (EO) est perpendiculaire à (AB). Pour les mêmes raisons que AOD, AOC est rectangle en C, donc (OC) est perpendiculaire à (AB). Ainsi les droites (OC) et (OE) sont toutes deux perpendiculaires à (AB) et passent par le même point O; Or il n'existe qu'une droite perpendiculaire à une autre et passant par un point donné. Conclusion, (OC) et (OE) sont confondues, c'est-à-dire que les points O, C et E sont alignés.

Exercice 3:



2) AOB est un triangle rectangle en O et (C') a pour diamètre [AB].

<u>Prop.</u>: Le cercle circonscrit d'un triangle rectangle a pour diamètre l'hypoténuse de ce triangle.

Donc (C') est circonscrit à AOB, i.e. O est sur (C').

3) M est un point du demi-cercle de diamètre [AB].

<u>Prop.</u>: Si un triangle est inscrit dans un cercle de diamètre un de ses côtés, alors il est rectangle.

Donc le triangle AMB est rectangle en M.

4) \widehat{ANB} est un angle inscrit dans (C) et \widehat{AOB} est l'angle au centre associé.

<u>Prop.</u> : un angle inscrit mesure la moitié de l'angle au centre associé.

Donc
$$\widehat{ANB} = \frac{1}{2} \widehat{AOB} = \frac{90}{2} = 45^{\circ}.$$

5)
$$\widehat{AMN} = \widehat{AMB} = 90^{\circ} (\text{voir } 3)$$
, $\widehat{ANM} = \widehat{ANB} = 45^{\circ}$.

La somme des angles d'un triangle faisant 180° , on a alors $\widehat{NAM} = 45^{\circ}$.

Le triangle AMN a un angle droit et deux angles égaux, il est donc rectangle isocèle en M.