1ère S

Valeur absolue (2)

Plan:

- I. Valeur absolue d'un réel et de son opposé
- II. Égalité de deux valeurs absolues
- III. Expression de la valeur absolue d'un réel suivant son signe
- IV. Racine carrée du carré d'un réel
- V. La fonction « valeur absolue »

Nous avons donné dans le chapitre sur la valeur absolue (1) la définition de la valeur absolue d'un réel comme distance à 0. Dans ce chapitre, nous allons donner des propriétés de la valeur absolue.

La notation de la valeur absolue ne sera toujours pas donnée dans ce chapitre ; il faudra attendre le prochain chapitre.

I. Valeur absolue d'un réel et de son opposé

1°) Propriété

Les valeurs absolues d'un réel et de son opposé sont égales.

2°) Démonstration

Un réel et son opposé sont à égale distance de 0 (illustration graphique évidente).

3°) Traduction

Pour tout réel x, on a :

valeur absolue de x =valeur absolue de l'opposé de x

valeur absolue de x = valeur absolue de -x

4°) Exemple

valeur absolue de 3 = valeur absolue de -3 = 3

II. Égalité de deux valeurs absolues

1°) Propriété

Deux réels ont la même valeur absolue si et seulement si ils sont égaux ou opposés.

Il s'agit d'une équivalence logique.

2°) Démonstration

La démonstration est évidente. On s'appuie sur la définition de la valeur absolue comme distance à 0.

3°) Traduction

valeur absolue de x =valeur absolue de y si et seulement si x = y ou x = -y

4°) Utilisation

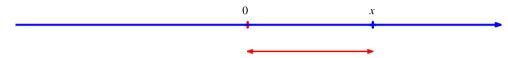
Cette propriété sera utilisée plus tard.

III. Expression de la valeur absolue d'un réel suivant son signe

1°) Démonstration

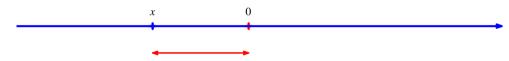
x est un réel quelconque.

• 1^{er} cas : x est positif ou nul



valeur absolue de x = distance entre 0 et x = x - 0 = x

• 2^e cas : x est négatif ou nul



valeur absolue de x = distance entre 0 et x = 0 - x = -x = opposé de x =

2°) Propriété

Soit x un réel quelconque.

- Si x est positif ou nul, alors la valeur absolue de x est égale à x.
- Si x est négatif ou nul, alors la valeur absolue de x est égale à l'opposé de x (c'est-à-dire x).
- La valeur absolue d'un réel positif ou nul est égale à ce réel.
- La valeur absolue d'un réel négatif ou nul est égale à son opposé.

Soit x un réel quelconque.

- Si x est positif ou nul, alors valeur absolue (x) = x.
- Si x est négatif ou nul, alors valeur absolue (x) = opposé de x = -x.

3°) Exemple d'application

Donner la valeur absolue de $\pi - 3$, $1 - \pi$, $2\pi + 5$, $-2 - 3\pi$.

Méthode générale :

On regarde le signe de chaque expression.

Pour les expressions $\pi-3$ et $1-\pi$ dont le signe n'est pas évident, on part du fait, supposé connu, que $\pi=3.1415...$

• Pour déterminer la valeur absolue de $\pi - 3$, on doit connaître le signe de $\pi - 3$.

On a: $\pi > 3$ donc $\pi - 3$ est strictement positif (c'est-à-dire $\pi - 3 > 0$).

Par conséquent, la valeur absolue de $\pi - 3$ est égale à $\pi - 3$.

On écrit l'égalité valeur absolue $(\pi - 3) = \pi - 3$.

• Pour déterminer la valeur absolue de $1-\pi$, on doit connaître le signe de $1-\pi$.

On a : $1 < \pi$ donc $1 - \pi$ est strictement négatif (c'est-à-dire $1 - \pi < 0$).

Par conséquent, la valeur absolue de $1-\pi$ est égale à l'opposé de $1-\pi$ c'est-à-dire $-(1-\pi)=\pi-1$.

On écrit l'égalité valeur absolue $(1-\pi) = \pi - 1$.

Pour les expressions $2\pi + 5$ et $-2 - 3\pi$, le signe est évident. On donne juste une petite explication.

• $2\pi + 5$ est strictement positif de manière évidente (c'est-à-dire $2\pi + 5 > 0$).

Par conséquent, la valeur absolue de $2\pi + 5$ est égale à $2\pi + 5$.

On écrit l'égalité valeur absolue $(2\pi + 5) = 2\pi + 5$.

• $-2-3\pi$ est strictement négatif de manière évidente (c'est-à-dire $-2-3\pi < 0$).

Par conséquent, la valeur absolue de $-2-3\pi$ est égale à l'opposé de $-2-3\pi$ c'est-à-dire $-\left(-2-3\pi\right)=2+3\pi$.

On écrit l'égalité valeur absolue $(-2-3\pi) = 2+3\pi$.

4°) Écriture de la valeur absolue d'une expression (exemple)

Pour exprimer la valeur absolue de x-2 où x est un réel quelconque, il faut discuter suivant le signe de x-2.

IV. Racine carrée du carré d'un réel

1°) Rappels sur la racine carrée

• Définition [racine carrée d'un réel positif ou nul] :

Pour tout réel $a \ge 0$, il existe un unique réel $x \ge 0$ tel que $x^2 = a$.

On l'appelle racine carrée de a et on le note \sqrt{a} .

La racine carrée d'un réel positif ou nul x est l'unique réel positif ou nul dont le carré est égal à x.

• Exemples :

La racine carrée de 4 est égale à 2 : $\sqrt{4} = 2$.

La racine carrée de 1 est égale à 1 : $\sqrt{1} = 1$.

La racine carrée de 0 est égale à 0 : $\sqrt{0} = 0$.

La racine carrée de – 1 n'existe pas.

2°) Remarque préliminaire

Étant donné un réel x, la racine carrée de x^2 (c'est-à-dire $\sqrt{x^2}$) existe toujours. En effet, l'expression x^2 est toujours positive ou nulle.

Nous allons simplifier l'expression de $\sqrt{x^2}$ pour x quelconque.

3°) Rappel

• 1^{er} cas : x est positif ou nul

Dans ce cas, $\sqrt{x^2} = x$.

• 2^e cas : x est négatif ou nul

Dans ce cas. $\sqrt{x^2} = -x$.

Avec la propriété du III, on peut donc énoncer la propriété suivante :

4°) Propriété

Pour tout réel x,

 $\sqrt{x^2}$ = valeur absolue de x

5°) Exemples

• Simplifier $\sqrt{(1-\pi)^2}$.

$$\sqrt{(1-\pi)^2}$$
 = valeur absolue de $1-\pi=\pi-1$.

• Simplifier $\sqrt{(x-2)^2}$ où x est un réel quelconque.

$$\sqrt{(x-2)^2}$$
 = valeur absolue de $x-2$

On ne peut pas aller plus loin car on ne connaît pas le signe de x-2.

6°) Mise en garde

Il faut se garder d'écrire $\sqrt{x^2} = x$ quand on ne connaît pas le signe de x. Cette égalité n'est vraie que lorsque x est un réel positif ou nul.

V. La fonction « valeur absolue »

1°) Définition

On appelle fonction « valeur absolue » la fonction f qui à tout réel x associe sa valeur absolue. On écrit $f: x \mapsto$ valeur absolue de x.

Il s'agit d'une nouvelle fonction de référence.

2°) Représentation graphique

On notera que la fonction « valeur absolue » est définie sur \mathbb{R} . En effet, on peut calculer la valeur absolue de n'importe quel réel (le résultat est toujours positif ou nul).

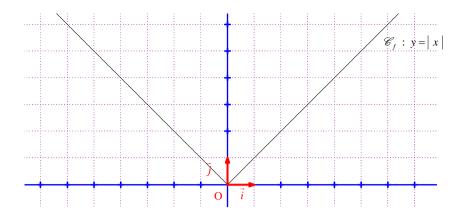
On sait que

pour tout réel
$$x$$
 positif ou nul, $f(x) = x$;
pour tout réel x négatif ou nul, $f(x) = \text{opposé de } x = -x$.

Pour tracer la représentation graphique de f dans le plan muni d'un repère, on trace donc les droites Δ et Δ' d'équations respectives y=x et y=-x.

On ne garde que les points de Δ d'abscisse positive ou nulle et que les points de Δ' d'abscisse négative ou nulle.

Ainsi, la représentation graphique de la fonction « valeur absolue » est la réunion de deux demi-droites fermées d'origine O.



On peut tracer la courbe représentative de la fonction « valeur absolue » sur l'écran de la calculatrice.

On dit que la fonction « valeur absolue » est une fonction affine par intervalles et même linéaires par intervalles.

Nous reverrons la fonction « valeur absolue » dans le chapitre sur les fonctions de référence.

3°) Symétrie

Dans un repère orthogonal, la représentation graphique de la fonction « valeur absolue » est symétrique par rapport à l'axe des ordonnées. Cela se retrouve par la propriété « valeur absolue de -x = valeur absolue de x ».

On dit que la fonction « valeur absolue » est **paire**.