TS1

Contrôle du mardi 24 mars 2015 (50 minutes)

Prénom :	Nom:	N	0	te	: /	2	0

I. (4 points)

Compléter sans rature et le plus lisiblement possible le tableau suivant où f désigne une fonction définie sur un intervalle I et F une primitive de f sur I. Tirer les traits de fraction à la règle.

f(x) =	I	F(x)=
$\frac{3x}{\sqrt{1-x^2}}$]-1;1[
$\frac{1-2x}{x^2-x}$]0;1[
$(1-3x)^8$	\mathbb{R}	
$1 - \frac{1}{1 + e^{-\frac{x}{2}}}$	\mathbb{R}	

II. (4 points)

On considère la fonction $f: x \mapsto \frac{3x+4}{(x+1)^3}$.

1°) Déterminer deux réels a et b tels que pour tout réel $x \neq -1$, on ait $f(x) = \frac{a}{(x+1)^2} + \frac{b}{(x+1)^3}$.

2°) En déduire l'expression d'une primitive F de f sur l'intervalle $]-1;+\infty[$ sous la forme d'un seul quotient.

$$F(x) = \dots$$

III. (4 points)

On considère la fonction $f: x \mapsto (x+2)e^{-x}$.
Déterminer deux réels a et b tels que la fonction $F: x \mapsto (ax+b)e^{-x}$ soit une primitive de la fonction f sur \mathbb{R}
(détailler les calculs).

Dans les exercices **IV** et **V**, le plan complexe P est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v}) .

IV. (6 points : 2 points + 2 points + 2 points)	
On note A et B les points de P d'affixes respectives 2 et i. On note P^* le plan P privé de A et B.	
Pour tout nombre complexe z distinct de 2 et de i, on pose $Z = \frac{z - i}{z - 2}$.	
1°) On note M le point d'affixe z. Compléter à l'aide d'un angle orienté de vecteurs.	
$\arg Z = \dots [2\pi]$	
2°) On note:	
• E l'ensemble des points M de P^* d'affixe z tels que arg $Z = 0$ [2 π];	
• F l'ensemble des points M de P^* d'affixe z tels que arg $Z = -\frac{\pi}{2}$ [2 π].	
Soit M un point de P^* d'affixe $z (z \neq 2 \text{ et } z \neq i)$.	V. (2 points)
Compléter l'équivalence suivante à l'aide d'un angle orienté de vecteurs.	On note P^* le plan P privé du point O . On note f l'application de P^* dans P qui à tout point M d'affixe $z \neq 0$ fait correspondre le point M' d'affixe
$M \in E \Leftrightarrow \dots$	$z' = z + \frac{1}{z}$. Le point M' est appelé l'image de M par f.
Compléter la phrase suivante (sans employer le mot « ensemble » ni parler du point M).	Déterminer l'ensemble E des points M' lorsque M décrit le cercle $\mathscr C$ de centre O et de rayon 1. Expliquer le raisonnement.
<i>E</i> est	
Effectuer la recherche de l'ensemble F sur le même modèle.	
Faire un graphique en prenant 2 cm pour unité de longueur et représenter les ensembles E et F avec soin et	

précision.

Corrigé du contrôle du 24-3-2015

I.

Compléter sans rature et le plus lisiblement possible le tableau suivant où f désigne une fonction définie sur un intervalle I et F une primitive de f sur I. Tirer les traits de fraction à la règle.

f(x)=	I	F(x) =
$\frac{3x}{\sqrt{1-x^2}}$]-1;1[$-3\sqrt{1-x^2}$
$\frac{1-2x}{x^2-x}$]0;1[$-\ln\left x^2 - x\right = -\ln\left(x - x^2\right)$
$(1-3x)^8$	\mathbb{R}	$-\frac{(1-3x)^9}{27} = \frac{(3x-1)^9}{27}$
$1 - \frac{1}{1 + e^{-\frac{x}{2}}}$	\mathbb{R}	$-2\ln\left(1+e^{-\frac{x}{2}}\right) = x - 2\ln\left(e^{\frac{x}{2}} + 1\right)$

2e primitive:

 $\forall x \in]0; 1[x^2 - x < 0 \text{ (règle du signe d'un trinôme du second degré) donc } | x^2 - x | = x - x^2$

4e primitive:

$$\forall x \in \mathbb{R} \quad 1 - \frac{1}{1 + e^{-\frac{x}{2}}} = \frac{e^{-\frac{x}{2}}}{1 + e^{-\frac{x}{2}}}$$

011

$$\forall x \in \mathbb{R} \quad 1 - \frac{1}{1 + e^{-\frac{x}{2}}} = 1 - \frac{e^{\frac{x}{2}}}{e^{\frac{x}{2}} + 1}$$

Dans chaque cas, on se réfère à la forme $\frac{u'}{u}$.

Selon la forme utilisée, on aboutit sur l'une ou l'autre des formes de primitive donnée dans le tableau ci-dessus. Il est possible de passer de l'une à l'autre directement en utilisant les propriétés de l'exponentielle et du logarithme népérien.

$$\forall x \in \mathbb{R} -2 \ln\left(1 + e^{-\frac{x}{2}}\right) = -2 \ln\left(1 + \frac{1}{e^{\frac{x}{2}}}\right)$$

$$= -2 \ln\left(\frac{e^{\frac{x}{2}} + 1}{e^{\frac{x}{2}}}\right)$$

$$= -2 \ln\left(e^{\frac{x}{2}} + 1\right) + 2 \ln\left(e^{\frac{x}{2}}\right)$$

$$= -2 \ln\left(e^{\frac{x}{2}} + 1\right) + 2 \times \frac{x}{2}$$

$$= x - 2 \ln\left(e^{\frac{x}{2}} + 1\right)$$

П.

On considère la fonction $f: x \mapsto \frac{3x+4}{(x+1)^3}$.

1°) Déterminer deux réels a et b tels que pour tout réel $x \ne -1$, on ait $f(x) = \frac{a}{(x+1)^2} + \frac{b}{(x+1)^3}$.

$$a = 3$$
 $b = 1$

$$\forall x \in \mathbb{R} \setminus \{-1\} \quad f(x) = \frac{3(x+1)+1}{(x+1)^3}$$
$$= \frac{3}{(x+1)^2} + \frac{1}{(x+1)^3}$$

2°) En déduire l'expression d'une primitive F de f sur l'intervalle]-1; $+\infty[$ sous la forme d'un seul quotient.

$$F(x) = -\frac{6x+7}{2(x+1)^2}$$

$$\forall x \in \mathbb{R} \setminus \{-1\} \quad F(x) = 3 \times \left(-\frac{1}{x+1}\right) - \frac{1}{2(x+1)^2}$$
$$= -\frac{3}{x+1} - \frac{1}{2(x+1)^2}$$
$$= -\frac{3 \times 2(x+1) + 1}{2(x+1)^2}$$
$$= -\frac{6x+7}{2(x+1)^2}$$

III.

On considère la fonction $f: x \mapsto (x+2)e^{-x}$.

Déterminer deux réels a et b tels que la fonction $F: x \mapsto (ax+b)e^{-x}$ soit une primitive de la fonction f sur \mathbb{R} (détailler les calculs).

$$\forall x \in \mathbb{R} \quad F'(x) = a \times e^{-x} + (ax+b) \times (-e^{-x})$$
$$= (a-b-ax)e^{-x}$$

Pour que F soit une primitive de la fonction f sur \mathbb{R} , il suffit de choisir les réels a et b de telle sorte qu'ils vérifient le

système
$$\begin{cases} -a = 1 \\ a - b = 2 \end{cases}$$

Par résolution immédiate, on obtient : $\begin{cases} a = -1 \\ b = -3 \end{cases}$

On vérifie aisément que ces réels conviennent bien.

Dans les exercices **IV** et **V**, le plan complexe P est muni d'un repère orthonormé direct $(0, \vec{u}, \vec{v})$.

IV.

On note A et B les points de P d'affixes respectives 2 et i.

On note P^* le plan P privé de A et B.

Pour tout nombre complexe z distinct de 2 et de i, on pose $Z = \frac{z - i}{z - 2}$.

1°) On note M le point d'affixe z.

Compléter à l'aide d'un angle orienté de vecteurs.

On peut noter que pour $z \neq 2$ et $z \neq i$, $Z \neq 0$ donc Z a un bien un argument.

$$\arg Z = (\overrightarrow{AM}; \overrightarrow{BM}) [2\pi]$$

ou

$$\arg Z = (\overrightarrow{MA}; \overrightarrow{MB}) [2\pi]$$

2°) On note:

- E l'ensemble des points M de P^* d'affixe z tels que arg Z = 0 [2 π];
- F l'ensemble des points M de P^* d'affixe z tels que arg $Z = -\frac{\pi}{2}$ [2 π].

Soit M un point de P^* d'affixe $z (z \neq 2 \text{ et } z \neq i)$.

Compléter l'équivalence suivante à l'aide d'un angle orienté de vecteurs.

$$M \in E \iff (\overrightarrow{MA}; \overrightarrow{MB}) = 0 \quad [2\pi]$$

Compléter la phrase suivante (sans employer le mot « ensemble » ni parler du point M).

E est la droite (AB) privée du segment [AB].

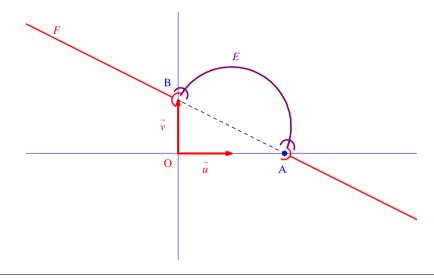
Effectuer la recherche de l'ensemble F sur le même modèle.

Soit M un point de P^* d'affixe $z \ (z \neq 2 \text{ et } z \neq i)$.

$$M \in F \iff (\overrightarrow{MA}; \overrightarrow{MB}) = -\frac{\pi}{2} [2\pi]$$

F est le demi-cercle de diamètre [AB] ne contenant pas le point O (ou situé au-dessus de la droite (AB)) privé de A et B.

Faire un graphique en prenant 2 cm pour unité de longueur et représenter les ensembles E et F avec soin et précision.



V.

On note P^* le plan P privé du point O.

On note f l'application de P^* dans P qui à tout point M d'affixe $z \neq 0$ fait correspondre le point M' d'affixe $z' = z + \frac{1}{z}$. Le point M' est appelé l'image de M par f.

Déterminer l'ensemble E des points M' lorsque M décrit le cercle $\mathscr C$ de centre O et de rayon 1. Expliquer le raisonnement.

Soit M un point de P^* d'affixe $z \ (z \neq 0)$.

 $M \in \mathscr{C}$ donc il existe un réel θ tel que $z = e^{i\theta}$ (on s'appuie sur le cours sur les équations paramétriques complexes de cercle).

On a alors $z' = e^{i\theta} + \frac{1}{e^{i\theta}} = e^{i\theta} + e^{-i\theta} = 2\cos\theta$.

On observe que z' est un réel.

Lorsque θ décrit \mathbb{R} , $\cos\theta$ décrit [-1;1] (en effet, la fonction cosinus est continue sur \mathbb{R}) et donc $2\cos\theta$ décrit l'intervalle [-2;2].

Lorsque θ décrit \mathbb{R} , M' décrit le segment AB où A et B sont les points d'affixes respectives -2 et 2.

Attention, certains élèves ont utilisé un raisonnement par équivalence (du type $M' \in E \Leftrightarrow ...$). Ce mode de raisonnement n'est pas du tout utilisable ici.