TS1 spécialité

Contrôle du mardi 30 septembre 2014 (50 minutes)

Écrire très lisiblement, sans rature et sans utiliser d'abréviations.		Note: / 20	
Prénom :	Nom :		
I. $(10 \text{ points} = 3 + 1 + 2 + 2 + 2)$			
Partie A			
Soit a , b , c , d quatre entiers relatifs tels que $a = 0$ Démontrer que b divise a si et seulement si b div On effectuera la démonstration en deux étapes: $1^{\text{ère}}$ étape: supposer que b divise a et démontrer 2^{e} étape: supposer que b divise d et démontrer que d 0 divise d 1 et démontrer que d 2 et demontrer que d 3 et demontrer que d 4 et démontrer que d 5 et demontrer que d 6 et demontrer que d 6 et demontrer que d 8 et demontrer que d 9 et demontrer que d	vise d . qu'alors b divise d .		

Partie B

Le but de cette partie est de déterminer tous les entiers relatifs n tels que $n+3$ divise $2n^2-n-6$.	

1°) Compléter l'égalité $2n^2 - n - 6 = (n+3)(\dots) + 15$.
2°) En déduire que $n+3$ divise $2n^2-n-6$ si et seulement si $n+3$ divise 15. On pourra utiliser le résultat de la partie A.
3°) Écrire sans justifier la liste de tous les diviseurs entiers relatifs de 15.
4°) Déterminer les valeurs possibles de n . On rédigera de manière succincte.

II. $(5 \text{ points} = 1 + 1 + 3)$	IV. (3 points)
Le but de l'exercice est de déterminer tous les couples $(x; y)$ d'entiers relatifs tels que l'on ait : $x^2 - 3 = xy$ (1).	Dans cet exercice, toute trace de recherche, même incomplète, ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation.
	Déterminer l'(les) entier(s) naturel(s) n tel(s) que la somme S des nombres n , $n+1$, $n+2$,, $2n$ divise 225.
1°) Compléter les pointillés : (1) \Leftrightarrow ×() = 3 (1').	On pourra utiliser la liste suivante des diviseurs positifs ou nuls de $150:1;2;3;5;6;10;15;25;30;50;75;150$.
2°) Compléter la phrase suivante :	
$(1') \Leftrightarrow x \text{ et } x - y \text{ sont des} \dots de 3.$	
3°) En déduire les valeurs possibles de <i>x</i> et <i>y</i> pour lesquelles l'égalité (1) est vérifiée. On ne demande pas de détailler la démarche.	
III. (2 points)	
On donne le programme de calculs suivant :	
on dome to programme de entents survinite.	
a) Choisir un nombre entier naturel,b) Ajouter 1,	
c) Calculer le carré du résultat obtenu, d) Lui soustraire le carré du nombre de départ, e) Écrire le résultat final.	
Que peut-on dire de la parité du nombre obtenu en sortie ? Justifier.	

Corrigé du contrôle du 30-9-2014

I.

Partie A

Soit a, b, c, d quatre entiers relatifs tels que a = bc + d (1). Démontrer que b divise a si et seulement si b divise d. On effectuera la démonstration en deux étapes : $1^{\text{ère}}$ étape : supposer que b divise a et démontrer qu'alors b divise a. 2^{e} étape : supposer que b divise d et démontrer qu'alors b divise a.

Supposons que b divise a. On a $b \mid b$ de manière évidente. Donc b divise toute combinaison linéaire de a et de b. D'où $b \mid a - bc$. Par suite, $b \mid d$.

Supposons que b divise d. On a $b \mid b$ de manière évidente. Donc b divise toute combinaison linéaire de d et de b. D'où $b \mid bc+d$. Par suite, $b \mid a$.

Une autre manière de faire consistait à utiliser la définition de la divisibilité.

Partie B

Le but de cette partie est de déterminer tous les entiers relatifs n tels que n+3 divise $2n^2-n-6$.

- 1°) Compléter l'égalité $2n^2 n 6 = (n+3)(2n-7) + 15$.
- 2°) En déduire que n+3 divise $2n^2-n-6$ si set seulement si n+3 divise 15. On pourra utiliser le résultat de la partie A.

On utilise le résultat de la partie A avec $a = 2n^2 - n - 6$, b = n + 3, c = 2n - 7, d = 15.

3°) Écrire sans justifier la liste de tous les diviseurs entiers relatifs de 15.

$$-1:1:-3:3:-5:5:-15:15$$

4°) Déterminer les valeurs possibles de n. On rédigera de manière succincte.

n+3 est un diviseur de 15 donc n+3 est égal à l'une des valeurs données à la question précédente. Les valeurs possibles de n sontdonc : -2; 0; 2; 12; -4; -6; -8; -18.

II.

Le but de l'exercice est de déterminer tous les couples (x; y) d'entiers relatifs tels que l'on ait : $x^2 - 3 = xy$ (1).

- 1°) Compléter les pointillés : (1) $\Leftrightarrow x \times (x y) = 3$ (1').
- 2°) Compléter la phrase suivante :
- $(1') \Leftrightarrow x \text{ et } x y \text{ sont des diviseurs associés de 3.}$
- 3°) En déduire les valeurs possibles de x et y pour lesquelles l'égalité (1) est vérifiée. On ne demande pas de détailler la démarche.

Les diviseurs de 3 sont : 1; 3; -1; -3.

Les couples (x; y) pour lesquels l'égalité (1) est vérifiée sont : (1; -2), (-1; 2), (3; 2), (-3; -2).

On peut aussi répondre de la manière suivante :

Soit S l'ensemble des couples vérifiant (1).

$$S = \{(1; -2), (-1; 2), (3; 2), (-3; -2)\}$$

III.

On donne le programme de calculs suivant :

- a) Choisir un nombre entier naturel.
- b) Ajouter 1.
- c) Calculer le carré du résultat obtenu.
- d) Lui soustraire le carré du nombre de départ,
- e) Écrire le résultat final.

Que peut-on dire de la parité du nombre obtenu en sortie ? Justifier.

Soit n le nombre entier saisi en entrée.

Le résultat final est égal à $(n+1)^2 - n^2 = 2n+1$.

On observe tout de suite sur la dernière expression que le résultat est un entier impair.

Une autre manière de faire – assez maladroite – consistait à faire une disjonction de cas suivant la parité de n.

IV.

Dans cet exercice, toute trace de recherche, même incomplète, ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation.

Déterminer l'(les) entier(s) naturel(s) n tel(s) que la somme S des nombres n, n+1, n+2, ..., 2n divise 225.

On pourra utiliser la liste suivante des diviseurs positifs ou nuls de 150 : 1; 2; 3; 5; 6; 10; 15; 25; 30; 50; 75: 150.

$$S = n + (n+1) + (n+2) + \dots + (n+n)$$

$$\left(S = \sum_{k=0}^{n} (n+k)\right)$$

= $(n+1) \times \frac{n+2n}{2}$ (il s'agit de la somme d'une suite de termes consécutifs d'une suite arithmétique)

$$=\frac{3n(n+1)}{2}$$

 $S \mid 225$ si et seulement si $\frac{3n(n+1)}{2} \mid 225$

si et seulement si il existe un entier naturel k tel que $225 = k \times \frac{3n(n+1)}{2}$

si et seulement si il existe un entier naturel k tel que $450 = k \times 3n(n+1)$

si et seulement si il existe un entier naturel k tel que $150 = k \times n(n+1)$ (1)

D'après (1), si $S \mid 225$, alors n et n+1 sont des diviseurs positifs ou nuls de 150.

De plus, n et n+1 sont des entiers naturels consécutifs.

On cherche donc les couples d'entiers consécutifs dans la liste des diviseurs positifs ou nuls de 150.

On trouve n = 1 ou n = 2 ou n = 5.

On vérifie que chacune de ces valeurs convient bien.