TS1

Devoir pour le jeudi 25 octobre 2012

- **I.** Soit (u_n) la suite définie par son premier terme $u_0 = 0$ et pour tout nombre entier naturel n, $u_{n+1} = u_n + 2(n+1)$.
- 1°) Calculer u_1 et u_2 .
- 2°) On considère l'algorithme suivant rédigé en langage naturel.

Entrée:

Saisir N (nombre entier naturel non nul)

Initialisation:

U prend la valeur 0

Traitement:

Pour K allant de 0 jusqu'à N - 1 **Faire** U prend la valeur U + 2(K + 1)

FinPour

V prend la valeur U - N

Sorties:

Afficher U et V

- a) Faire fonctionner cet algorithme « à la main » en prenant N = 3.
- b) Pour N = n, exprimer les valeurs affichées de U et V à l'aide de u_n .
- c) Émettre une conjecture sur l'expression de V en fonction de n, puis sur l'expression de u_n en fonction de n.
- 3°) Démontrer par récurrence la conjecture portant sur l'expression de u_n .
- 4°) On se propose de retrouver l'expression de u_{\perp} par une autre méthode.

On écrit l'égalité $u_{k+1} = u_k + 2(k+1)$ pour $k \in \{0, 1, ..., n\}$ et on fait la somme membre à membre comme dans le cadre ci-dessous :

$$u_1 = u_0 + \dots$$
 $u_2 = u_1 + \dots$
 \vdots
 $u_n = u_{n-1} + \dots$

Recopier et compléter ce cadre.

En additionnant membre et en simplifiant, retrouver l'expression de u_n en fonction de n.

II. Soit *n* un entier naturel non nul.

On pose
$$f(x) = 1 + x + x^2 + x^3 + ... + x^n$$
 et $g(x) = 1 + 2x + 3x^2 + ... + nx^{n-1}$.

- 1°) Quel lien y a-t-il entre f et g?
- 2°) On suppose $x \neq 1$.
- a) Donner une formule sommatoire pour *f* (*x*) et *g* (*x*). Le polynôme du numérateur sera ordonné suivant les puissances décroissantes de *x*.

b) **Application**

Donner une formule sommatoire pour $\sum_{i=1}^{n} k 2^{k-1}$.

Vérifier cette formule sommatoire en utilisant un logiciel de calcul formel.

3°) Question facultative

On pose
$$h(x) = 2 + 6x + ... + n(n-1)x^{n-2}$$
.

Donner une formule sommatoire pour h(x) lorsque $x \ne 1$.

Le polynôme du numérateur sera ordonné suivant les puissances décroissantes de x.