1ère S

Révisions pour le contrôle commun du mardi 15 novembre 2011

1 Démontrer que la fonction $f: x \mapsto |x| + |x-4|$.

Démontrer que la fonction f est constante sur [0; 4].

2 Questions rapides sans justification

- 1°) Donner la forme canonique du polynôme $P(x) = \frac{1}{2}x^2 x + 3$.
- 2°) Donner le signe du polynôme $Q(x) = x^2 x + 2$.
- 3°) Soit u une fonction définie sur l'intervalle [-5;5]. Donner l'ensemble de définition de la fonction v définie par v(x) = u(2x-1).
- 4°) Calculer le discriminant réduit Δ ' du polynôme $x^2 2kx + 1$ (où k est un réel).
- 3 Soit f la fonction définie par $f(x) = \frac{1}{x^2 + 1}$.

Partie A

- 1°) a) Démontrer que f est bien définie sur \mathbb{R} .
 - b) Étudier la parité de f. (Indication : comparer f(-x) et f(x)).
- 2°) Soit a et b appartenant à $[0; +\infty[$ tels que a < b. Comparer f(a) et f(b); en déduire le sens de variation de f sur $[0; +\infty[$.

Donner sans justifier le sens de variation de f sur $]-\infty$; 0].

Partie B

On considère la fonction g définie par $g(x) = \frac{2x^2 + 1}{2x^2 + 2}$

- 1°) Démontrer que pour tout réel x on a $g(x) = 1 \frac{f(x)}{2}$
- 2°) Déduire de l'égalité précédente et des résultats de la partie A les variations de g.

- 4 On considère le polynôme P(x) = 2(x-9)(4-x).
- 1°) Donner sans justifier la forme développée de P(x).
- 2°) On considère la fonction f définie sur \mathbb{R} par $f(x) = \frac{1}{-2x^2 + 10x 8} + \frac{1}{4 x}$.
- a) Donner l'ensemble de définition $\boldsymbol{\mathcal{D}}$ de f.
- b) Pour $x \in \mathcal{D}$, écrire f(x) sous la forme d'un seul quotient dont le dénominateur est un polynôme du second degré.
- 3°) On pose $Q(x) = -2x^4 + 10x^2 8$.
- a) Factoriser Q(x) en produit de 4 facteurs du premier degré.
- b) Résoudre dans \mathbb{R}
- l'équation Q(x) = 0 l'inéquation Q(x) > 0.
- **5** On considère le polynôme : $P(x) = x^4 + 4x^3 + 4x^2 1$.
- 1°) Démontrer que pour tout réel x, on a : $P(x) = x^2(x+2)^2 1$.
- 2°) Déduire du 1°) une factorisation de P(x) en produit de deux polynômes du second degré.
- 3°) Résoudre dans \mathbb{R} l'équation P(x) = 0 (E).
- **6** Déterminer l'ensemble de définition de la fonction $f: x \mapsto \sqrt{x^2 2x 3}$.
- 7 Résoudre dans \mathbb{R} l'équation : $(x^2 + 2x 1)^2 9 = 0$ (E).
- 8 On considère le polynôme $P_m(x) = mx^3 + (4-m)x^2 + 2(m-3)x 2(m-1)$ où m est un réel.

Démontrer que, pour tout réel m, 1 est racine de $P_m(x)$.

- **9** 1°) Donner le tableau de signe du polynôme $P(x) = 3 + x 2x^2$.
- 2°) En déduire sans calcul le signe de $P\left(-\frac{1}{3}\right)$; P(-10) et $P\left(\sqrt{13}\right)$.
- 10 Déterminer deux entiers naturels consécutifs dont la somme de leurs carrés soit égale à 3281.
- 11 Développer les expressions $A(x) = (3x^2 2x 5)^2$ et $B(x) = -2(3x^2 + 2)^2 (2x 1) \times (2x + 1)^3$. Vérifier les résultats avec le logiciel *XCas*.
- 12 Étudier la position relative de la courbe \mathcal{C} d'équation $y = -x^2 + 4x + 2$ et de la droite D d'équation y = 2x + 1 dans le plan muni d'un repère (O, \vec{i}, \vec{j}) .

Tracer la courbe et la droite à l'aide du logiciel *Geogebra* et vérifier graphiquement les résultats obtenus.

13 Étudier par le calcul la position relative des courbes \mathcal{C} et \mathcal{C} d'équations respectives $y = x^2 - 6x + 7$ et $y = -x^2 + 4x - 1$ dans le plan muni d'un repère (O, \vec{i}, \vec{j}) .

Tracer les courbes à l'aide du logiciel Geogebra et vérifier graphiquement les résultats obtenus.

14 1°) Résoudre dans
$$\mathbb{R}$$
 l'équation : $(x^2 + 1)^2 - 5(x^2 + 1) + 6 = 0$ (1).
2°) Résoudre dans \mathbb{R} l'inéquation : $3x - 1 > \frac{4}{x}$ (2).

15 Formes canonique d'un polynôme du second degré

Donner la forme canonique des polynômes.

1°) Niveau 1

$$A = x^2 - 8x + 5$$
; $B = x^2 - 6x + 1$; $C = x^2 - 8x + 2$; $D = x^2 - 2x - 7$

2°) Niveau 2

$$E = 2x^2 - 3x + 1$$
; $F = 6x - x^2$; $G = x^2 - 2x\sqrt{3} + 5$; $H = 3x^2 - x - 2$; $I = -\frac{1}{2}x^2 + x + 3$

Réponses

10 40 et 41.

11
$$A(x) = 9x^4 - 12x^3 - 26x^2 + 20x + 25$$
 $B(x) = -16x^4 - 16x^3 + 4x - 3$

15 1°)
$$A = (x-4)^2 - 9$$
; $B = (x-3)^2 - 8$; $C = (x-4)^2 - 14$; $D = (x-1)^2 - 8$
2°) $E = 2\left(x - \frac{3}{4}\right)^2 - \frac{1}{8}$