1^{ère} S

Probabilités

I. Exemples introductifs

1°) Exemple 1

On considère l'expérience aléatoire qui consiste à lancer une pièce <u>non truquée</u>.

On note le côté qu'elle présente.

On dira que la probabilité d'obtenir pile est égale à $\frac{1}{2}$.

On dira que la probabilité d'obtenir face est égale à $\frac{1}{2}$.

L'expérience aléatoire est modélisée par une loi de probabilité P donnée dans le tableau.

Résultat	Pile	Face	
Probabilité	$\frac{1}{2}$	$\frac{1}{2}$	Total = 1

2°) Exemple 2

On considère l'expérience aléatoire qui consiste à lancer une pièce <u>truquée</u> telle qu'il y ait une chance sur 4 qu'elle présente le côté pile.

On note le côté qu'elle présente.

On dira que la probabilité d'obtenir pile est égale à $\frac{1}{4}$

On dira que la probabilité d'obtenir face est égale à $\frac{3}{4}$.

L'expérience aléatoire est modélisée par une loi de probabilité P donnée dans le tableau.

Résultat	Pile	Face	
Probabilité	$\frac{1}{4}$	$\frac{3}{4}$	Total =1

II. Loi de probabilité

1°) Définition

On définit une **loi de probabilité** sur l'ensemble des résultats $e_1, e_2, ..., e_n$ d'une expérience aléatoire en leur attribuant des nombres fixes $p_1, p_2, ..., p_n$ vérifiant les deux conditions suivantes :

 C_1 : pour tout entier $i \in \{1, 2, ..., n\}$, $0 \le p_i \le 1$

 $C_2: p_1 + p_2 + ... + p_n = 1$

2°) Tableau

Résultats	$e_{ m l}$	e_2	e_n	
Probabilités	p_1	p_2	p_n	Total = 1

3°) Notation

On note P la loi de probabilité.

On écrira $P(e_1) = p_1$ (probabilité du résultat e_1), $P(e_2) = p_2$ (probabilité du résultat e_2)...

On dira que l'expérience aléatoire est **modélisée** par la loi de probabilité P.

4°) Interprétation

 p_i est un nombre compris entre 0 et l qui mesure la chance que le résultat e_i a de se réaliser.

III. Probabilité d'un événement

1°) Exemple

On lance un dé cubique truqué.

On note le numéro de la face supérieure.

On suppose que l'expérience aléatoire est modélisée par la loi de probabilité P ci-dessous.

Résultat	1	2	3	4	5	6	
Probabilité	0,1	0,1	0,1	0,1	0,1	0,5	Total = 1

On considère l'événement A : « obtenir un numéro pair ».

Attention à l'orthographe du mot *événement*, il y a bien deux accents aigus contrairement à ce que laisserait supposer la prononciation usuelle ; il s'agit d'une anomalie due à une erreur de typographie commise au XVII^e siècle.

$$P(A) = P(2) + P(4) + P(6)$$

 $P(A) = 0,7$

2°) Définition

La probabilité d'un événement A est donnée par la formule P(A) = somme des probabilités des résultats qui constituent A.

3°) Interprétation

P(A) est un nombre compris entre 0 et 1 qui mesure la chance que l'événement A a de se réaliser.

IV. Cas d'équiprobabilité

1°) Définition

On dit que l'on est dans un **cas d'équiprobabilité** lorsque tous les résultats possibles pour l'expérience aléatoire ont la même probabilité.

2°) Tableau

Résultats	e_{l}	e_2	e_n	
Probabilités	$\frac{1}{n}$	$\frac{1}{n}$	$\frac{1}{n}$	Total = 1

n: nombre de résultats possibles

3°) Vocabulaire

On dit que la loi de probabilité P qui modélise l'expérience aléatoire est une **loi d'équiprobabilité** ou une **loi équirépartie**.

4°) Probabilité d'un événement (Formule de Laplace)

Dans le cas de l'équiprobabilité, la probabilité d'un événement A est donnée par la formule

$$P(A) = \frac{\text{nombre de résultats possibles pour A}}{\text{nombre de résultats possibles pour l'expérience aléatoire}}$$

5°) Démonstration

On note k le nombre de résultats possibles pour A.

On a vu que : P(A) = somme des probabilités des résultats qui constituent A

Donc
$$P(A) = \frac{1}{n} + \frac{1}{n} + \dots + \frac{1}{n}$$
 (k termes)
 $P(A) = k \times \frac{1}{n}$
 $P(A) = \frac{k}{n}$

$$P(A) = \frac{\text{nombre de résultats possibles pour A}}{\text{nombre de résultats possibles pour l'expérience aléatoire}}$$

6°) Exercice-type (avec rédaction)

Une urne contient 3 boules rouges R₁, R₂, R₃ et 2 boules noires N₁ et N₂.

On tire une boule au hasard.

On note la couleur de la boule tirée.

On considère l'événement A : « obtenir une boule rouge ».

Calculer la probabilité de A.

Le tirage étant effectué au hasard, on peut adopter le modèle d'équiprobabilité, c'est-à-dire que l'on modélise l'expérience aléatoire par une loi d'équiprobabilité *P*.

Le nombre de résultats possibles pour l'expérience aléatoire est égal à 5.

Le nombre de résultats possibles pour A est égal à 3.

D'après la formule de Laplace,
$$P(A) = \frac{3}{5}$$

V. Vocabulaire des événements

1°) Exemple

On lance un dé cubique.

On considère les événements

A: « obtenir un numéro inférieur ou égal à 4 »

B: « obtenir un numéro pair »

C: « obtenir un numéro inférieur ou égal à 6 »

D: « obtenir un numéro strictement supérieur à 6 ».

On note Ω l'ensemble de tous les résultats possibles pour l'expérience (univers des possibles).

$$Ω = {1,2,3,4,5,6}$$

$$A = {1,2,3,4}$$

$$B = {2,4,6}$$

$$C = Ω$$

$$D = \emptyset$$

2°) Définition de l'univers des possibles

Ensemble de tous les résultats possibles pour l'expérience aléatoire : $\Omega = \{e_1, e_2, ..., e_n\}$

3°) Définition d'un événement quelconque

Un événement est une partie ou un sous-ensemble de Ω .

4°) Définitions d'événements particuliers

• événement certain : Ω

• événement impossible : Ø

• événement élémentaire : événement constitué d'un seul résultat (singleton)

5°) Réunion et intersection de 2 événements

A∩B: intersection de A et B (événement constitué des résultats possibles pour A et B)

AUB: réunion de A et B (événement constitué des résultats possibles pour A ou B (ou inclusif))

N.B.:

$$A \cap B = B \cap A$$
 et $A \cup B = B \cup A$.

6°) Exemple

Hypothèses du 1°).

A: « obtenir un numéro inférieur ou égal à 4 »

B: « obtenir un numéro pair »

 $A \cap B$: « obtenir un numéro inférieur ou égal à 4 $\boxed{\textbf{et}}$ pair

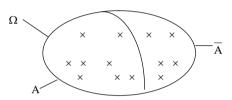
 $A \cap B = \{2,4\}$

A∪B : « obtenir un numéro inférieur ou égal à 4 ou pair »

 $A \cup B = \{1,2,3,4,6\}$

7°) Evénement contraire

A : événement constitué de tous les résultats qui n'appartiennent pas à A

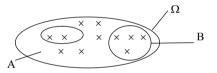


× 3

× 5

8°) Evénements incompatibles

On dit que deux événements A et B sont **incompatibles** pour exprimer que $\mathbf{A} \cap \mathbf{B} = \emptyset$ (aucun résultat commun).



Exemple:

Un événement et son contraire.

5°) Lois de Morgan

A et B sont deux événements quelconques.

 $\overline{A \cap B} = \overline{A} \cup \overline{B}$

 $\overline{A \cup B} = \overline{A} \cap \overline{B}$

Rappel: la barre veut dire contraire.

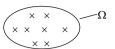
VI. Propriétés des probabilités

(Les démonstrations sont quasiment évidentes)

(Ω, P) est un espace probabilisé.

1°) Propriété 1 (probabilité de l'événement certain)

 $P(\Omega) = 1$

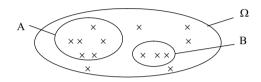


2°) Propriété 2 (probabilité de l'événement impossible)

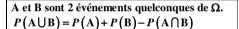
$$P(\varnothing) = 0$$

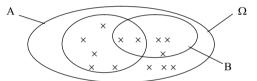
3°) Propriété 3 (probabilité de la réunion de 2 événements incompatibles)

A et B sont 2 événements incompatibles $(A \cap B = \emptyset)$ $P(A \cup B) = P(A) + P(B)$



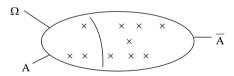
4°) Propriété 4 (probabilité de la réunion de 2 événements)





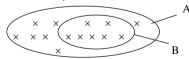
5°) Propriété 5 (probabilité d'un événement contraire)

A est un événement quelconque de Ω . $P(\overline{A}) = 1 - P(A)$



6°) Propriété 6 (probabilités d'événements inclus l'un dans l'autre)

Si $A \subset B$, alors $P(A) \le P(B)$. De plus, on a : $P(B \setminus A) = P(B) - P(A)$.



VII. Probabilités et statistiques ; simulations d'expériences aléatoires

Lien entre probabilités et statistiques.

simuler = faire comme si

Intérêt d'une simulation d'expérience aléatoire : donner une idée d'un résultat permettant d'amorcer une modélisation.

Simulations sur ordinateur ou sur calculatrice (voir exercices).

Comment modéliser le hasard?

Un exemple

Une urne contient:

- 3 boules R;
- 2 boules N.

On tire successivement deux boules avec remise.

Il y a 4 types de tirages possibles :

N-N // R-N // N-R // R-R

$$\frac{1}{4}$$
 $\frac{1}{4}$ $\frac{1}{4}$ $\frac{1}{4}$

Néanmoins on ne peut pas dire que la probabilité de chacun de ces tirages est égale à $\frac{1}{4}$.

Ce serait contraire à l'expérience.

Ce chapitre est l'occasion de revenir sur la logique mathématique.

Logique mathématique ≠ logique de tous les jours.

En mathématiques, on a une logique binaire : un énoncé est toujours soit vrai soit faux (pas de demimesure).

En mathématiques, les mots ont leur sens fort : « tout » signifie pour tout, sans exception.

Evénement contraire et négation d'une proposition

Exemples simples:

« Personne ne m'écoute ».

Contraire de cette proposition?

« Au moins une personne m'écoute. »

« Tout le monde parle. »

Contraire de cette proposition?

« Au moins une personne ne parle pas. »

Rôle du contre-exemple pour démontrer qu'une proposition universelle est fausse.

Point-méthode

1 Retour sur réunion et intersection

Exemples sur la droite réelle

a) Intersection

L'intersection est constituée des éléments communs aux deux.

« L'intersection c'est ce qu'il y a en commun ».

Intersection: rouge et bleu.

b) Réunion



La réunion est constituée des éléments qui appartiennent soit à l'un soit à l'autre, soit aux deux à la fois.

« La réunion c'est la somme des deux. »

Réunion : rouge ou bleu ou les deux.

2 Point-méthode pour chercher la probabilité de l'intersection de deux événements

Il n'y a pas de formule à appliquer

Pour cherche la probabilité d'une intersection, on cherche les résultats qui vérifient la condition des deux événements.

3 Point-méthode pour chercher la probabilité de la réunion de deux événements

On utilise la formule