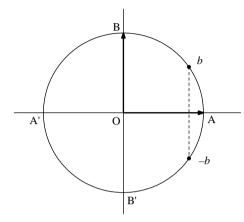
1^{ère} S Chapitre 30

Equations et inéquations trigonométriques avec des cosinus et des sinus

I. Règles fondamentales

1°) Egalité de deux cosinus

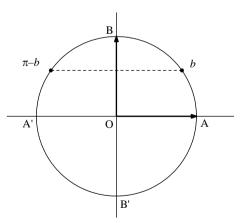
a et b sont deux réels.



$$\cos a = \cos b$$
 si et seulement si $a = b + 2k\pi (k \in \mathbb{Z})$ ou $a = -b + 2k\pi (k' \in \mathbb{Z})$

2°) Egalité de deux sinus

a et b sont deux réels.



$$\sin a = \sin b \text{ si et seulement si}$$

$$a = b + 2k\pi \quad (k \in \mathbb{Z})$$
ou
$$a = \pi - b + 2k \cdot \pi \quad (k' \in \mathbb{Z})$$

II. Exemples de résolutions d'équations trigonométriques

1°) Exemple 1

Résoudre dans \mathbb{R} l'équation $\cos x = \frac{1}{2}$ (1).

Astuce de départ :

$$\frac{1}{2} = \cos \frac{\pi}{3}$$

Réécriture de l'équation

(1) s'écrit
$$\cos x = \cos \frac{\pi}{3}$$

(1)
$$\Leftrightarrow \cos x = \cos \frac{\pi}{3}$$
 (« on équilibre l'équation »)
$$\begin{cases} x = \frac{\pi}{3} + 2k\pi \left(k \in \mathbb{Z} \right) \\ \Leftrightarrow & \text{ou} \end{cases}$$
(on « enlève » les cos avec la règle 1)
$$\begin{cases} x = -\frac{\pi}{3} + 2k'\pi \left(k' \in \mathbb{Z} \right) \end{cases}$$

$$S_1 = \left\{ \frac{\pi}{3} + 2k\pi, \ k \in \mathbb{Z} \right\} \cup \left\{ -\frac{\pi}{3} + 2k'\pi, \ k' \in \mathbb{Z} \right\}$$

2°) Exemple 2

Résoudre dans
$$\mathbb{R}$$
 l'équation $\underbrace{\sin\left(x + \frac{\pi}{3}\right)}_{\text{ne pas développer}} = \frac{\sqrt{2}}{2}$ (2).

Astuce de départ :

$$\frac{\sqrt{2}}{2} = \sin \frac{\pi}{4}$$

Réécriture de l'équation

(2) s'écrit
$$\sin\left(x + \frac{\pi}{3}\right) = \sin\frac{\pi}{4}$$

(2) $\Leftrightarrow \sin\left(x + \frac{\pi}{3}\right) = \sin\frac{\pi}{4}$

$$\begin{cases} x + \frac{\pi}{3} = \frac{\pi}{4} + 2k\pi & (k \in \mathbb{Z}) \\ \Leftrightarrow & \text{ou} \\ x + \frac{\pi}{3} = \pi - \frac{\pi}{4} + 2k'\pi & (k' \in \mathbb{Z}) \end{cases}$$

2

$$\Rightarrow \begin{cases} x = \frac{\pi}{4} - \frac{\pi}{3} + 2k\pi & (k \in \mathbb{Z}) \\ \text{ou} \\ x = \pi - \frac{\pi}{4} - \frac{\pi}{3} + 2k'\pi & (k' \in \mathbb{Z}) \end{cases}$$

$$\Leftrightarrow \begin{cases} x = -\frac{\pi}{12} + 2k\pi & (k \in \mathbb{Z}) \\ \text{ou} \\ x = \frac{5\pi}{12} + 2k'\pi & (k' \in \mathbb{Z}) \end{cases}$$

$$S_2 = \left\{ -\frac{\pi}{12} + 2k\pi, \ k \in \mathbb{Z} \right\} \cup \left\{ \frac{5\pi}{12} + 2k'\pi, \ k' \in \mathbb{Z} \right\}$$

3°) Exemple 3

Résoudre dans \mathbb{R} l'équation $\cos 3x = \sin x$ (3).

Astuce de départ :

$$\sin x = \cos\left(\frac{\pi}{2} - x\right)$$

Réécriture de l'équation

(3) s'écrit
$$\cos 3x = \cos\left(\frac{\pi}{2} - x\right)$$

(3)
$$\Leftrightarrow$$
 cos $3x = \cos\left(\frac{\pi}{2} - x\right)$

$$\begin{cases} 3x = \frac{\pi}{2} - x + 2k\pi & (k \in \mathbb{Z}) \\ \Leftrightarrow & \text{ou} \\ 3x = -\frac{\pi}{2} + x + 2k'\pi & (k' \in \mathbb{Z}) \end{cases}$$

$$\Leftrightarrow \begin{cases} 4x = \frac{\pi}{2} + 2k\pi & (k \in \mathbb{Z}) \\ \Leftrightarrow & \text{ou} \\ 2x = -\frac{\pi}{2} + 2k'\pi & (k' \in \mathbb{Z}) \end{cases}$$

$$\begin{cases} x = \frac{2}{4} & (k \in \mathbb{Z}) \\ \Leftrightarrow \begin{cases} \text{ou} \\ \end{cases} \\ x = \frac{-\frac{\pi}{2} + 2k'\pi}{2} & (k' \in \mathbb{Z}) \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{\pi}{8} + k \frac{\pi}{2} & (k \in \mathbb{Z}) \\ \text{ou} \\ x = -\frac{\pi}{4} + k' \pi & (k' \in \mathbb{Z}) \end{cases}$$

$$\boxed{S_3 = \left\{\frac{\pi}{8} + k\frac{\pi}{2}, \ k \in \mathbb{Z}\right\} \bigcup \left\{-\frac{\pi}{4} + k'\pi, \ k' \in \mathbb{Z}\right\}}$$



1 ^{ère} famille (points rouges)	2 ^e famille (points verts)
$k=0:\frac{\pi}{8}$	$k'=0:-\frac{\pi}{4}$
$k = 1 : \frac{\pi}{8} + \frac{\pi}{2} = \frac{5\pi}{8}$	$k' = 1 : -\frac{\pi}{4} + \pi = \frac{3\pi}{4}$
$k = 2 : \frac{\pi}{8} + \pi = \frac{9\pi}{8}$	
$k = 3 : \frac{\pi}{8} + \frac{3\pi}{2} = \frac{13\pi}{8}$	

III. Equations trigonométriques particulières

1°) Règles

Par lecture du cercle trigonométrique, on obtient dans chaque cas une seule famille de solutions.

$$\cos x = 1 \iff x = 2k\pi \quad (k \in \mathbb{Z})$$

$$\cos x = -1 \iff x = \pi + 2k\pi \quad (k \in \mathbb{Z})$$

$$\cos x = 0 \iff x = \frac{\pi}{2} + k\pi \quad (k \in \mathbb{Z})$$

$$\sin x = 1 \iff x = \frac{\pi}{2} + 2k\pi \quad (k \in \mathbb{Z})$$

$$\sin x = -1 \iff x = -\frac{\pi}{2} + 2k\pi \quad (k \in \mathbb{Z})$$

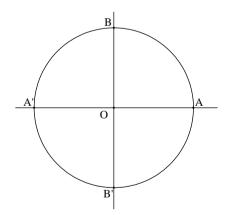
$$\sin x = 0 \iff x = k\pi \quad (k \in \mathbb{Z})$$

2°) Justification

Donner 6 cercles trigonométriques

• Equation $\cos x = 1$

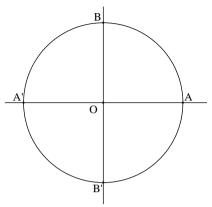
Les solutions ont pour point image A.



Les solutions sont les nombres 0, 2π , 4π , -2π , -4π ... Il s'agit des nombres de la forme $2k\pi$ avec $k \in \mathbb{Z}$.

• Equation $\cos x = -1$

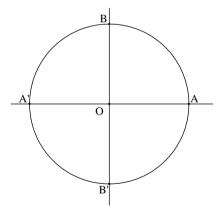
Les solutions ont pour point image A'.



Les solutions sont les nombres π , 3π , $-\pi$, -3π ... Il s'agit des nombres de la forme $\pi+2k\pi$ avec $k \in \mathbb{Z}$.

• Equation $\cos x = 0$

Les solutions ont pour points images B et B'.

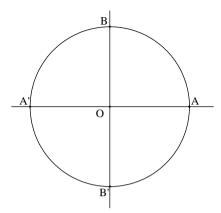


Les solutions sont les nombres $\frac{\pi}{2}$, $\frac{3\pi}{2}$, $-\frac{\pi}{2}$, $-\frac{3\pi}{2}$...

Il s'agit des nombres de la forme $x = \frac{\pi}{2} + k\pi$ avec $k \in \mathbb{Z}$.

• Equation $\sin x = 1$

Les solutions ont pour point image B.

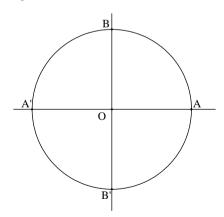


Les solutions sont les nombres $\frac{\pi}{2}$, $\frac{\pi}{2} + 2\pi$, $\frac{\pi}{2} + 4\pi$, $\frac{\pi}{2} - 2\pi$, $\frac{\pi}{2} - 4\pi$...

Il s'agit des nombres de la forme $\frac{\pi}{2} + 2k\pi$ avec $k \in \mathbb{Z}$.

• Equation $\sin x = -1$

Les solutions ont pour point image B'.

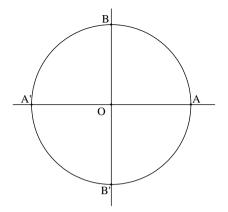


Les solutions sont les nombres $-\frac{\pi}{2}$, $-\frac{\pi}{2}+2\pi$, $-\frac{\pi}{2}+4\pi$, $-\frac{\pi}{2}-2\pi$, $-\frac{\pi}{2}-4\pi$...

Il s'agit des nombres de la forme $-\frac{\pi}{2} + 2k\pi$ avec $k \in \mathbb{Z}$.

• Equation $\sin x = 0$

Les solutions ont pour points images A et A'.



Les solutions sont les nombres $0, \pi, 2\pi, 3\pi, 4\pi, -\pi, -2\pi, -3\pi, -4\pi$... Il s'agit des nombres de la forme $x = k\pi$ avec $k \in \mathbb{Z}$.

IV. Résolution d'une équation trigonométrique dans un intervalle donné (exemple)

Résoudre dans [0; 4π] l'équation $\cos 2x = \frac{1}{2}$ (1).

1^{ère} étape :

On résout l'équation dans \mathbb{R} .

Astuce de départ :

2^e étape :

On cherche les solutions dans $[0; 4\pi]$

1 ^{ère} famille		2° famille		
On cherche $k \in \mathbb{Z}$ tel que : $0 \le \frac{\pi}{6} + k\pi \le 4\pi$ $0 \le \frac{1}{6} + k \le 4$ $-\frac{1}{6} \le k \le \frac{23}{6}$ $-\frac{1}{6} = -0.166$ $\frac{23}{6} = 3.833$		On cherche $k' \in \mathbb{Z}$ tel que : $0 \le -\frac{\pi}{6} + k' \pi \le 4\pi$ $0 \le -\frac{1}{6} + k' \le 4$ $\frac{1}{6} \le k' \le \frac{25}{6}$ $\frac{1}{6} = 0,166$ $\frac{25}{6} = 4,1666$		$\pi (\pi > 0)$ + $\frac{1}{6}$
$k \in \mathbb{Z}$		$k' \in \mathbb{Z}$		
Donc		Donc		
$\begin{cases} k = 0 \\ \text{ou} \\ k = 1 \\ \text{ou} \\ k = 2 \\ \text{ou} \\ k = 3 \end{cases}$		$\begin{cases} k' = 1 \\ \text{ou} \\ k' = 2 \\ \text{ou} \\ k' = 3 \\ \text{ou} \\ k' = 4 \end{cases}$		

On donne l'ensemble des solutions dans $[0; 4\pi]$.

$$S_{[0;4\pi]} = \left\{ \frac{\pi}{6}; \frac{5\pi}{6}; \frac{7\pi}{6}; \frac{11\pi}{6}; \frac{13\pi}{6}; \frac{17\pi}{6}; \frac{19\pi}{6}; \frac{23\pi}{6} \right\}$$

V. Inéquations trigonométriques

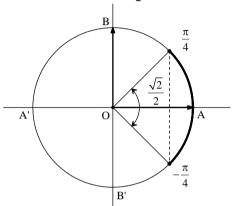
1°) Remarques préliminaires

- Il n'y a pas de règle.
- On utilise le cercle trigonométrique.

2°) Exemples

• Exemple 1

Résoudre dans l'intervalle $[-\pi; \pi]$ l'inéquation $\cos x \ge \frac{\sqrt{2}}{2}$.



D'après le cercle trigonométrique : $S = \left[-\frac{\pi}{4}; \frac{\pi}{4} \right]$

• Exemple 2

Résoudre dans l'intervalle $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$ l'inéquation $\sin 2x \ge \frac{1}{2}$.

1^{ère} étape

On pose : X = 2x.

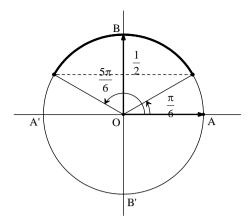
$$-\frac{\pi}{2} \le x \le \frac{\pi}{2}$$

$$-\pi \le 2x \le \pi$$

$$\times 2 (2 > 1)$$

$$-\pi \le X \le \pi$$

Donc
$$\begin{cases} \sin X \ge \frac{1}{2} \\ X \in [-\pi; \pi] \end{cases}$$



D'après le cercle trigonométrique :

$$\frac{\pi}{6} \le X \le \frac{5\pi}{6}$$

2^e étape

Or
$$X = 2x$$

Donc
$$\frac{\pi}{6} \le 2x \le \frac{5\pi}{6}$$

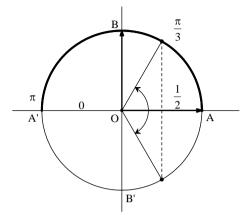
$$\frac{\pi}{12} \le x \le \frac{5\pi}{12}$$
: 2 (2 >0)

$$S = \left[\frac{\pi}{12}; \frac{5\pi}{12}\right]$$

VI. Utilisation de la calculatrice

1°) Pour les cosinus

$$\cos x = \frac{1}{2}$$



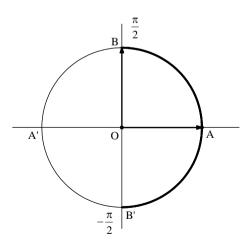
Calculatrice

Mode radians:

2nd
$$\cos 0.5 = 1.04719...$$
 $\frac{\pi}{3}$

La calculatrice donne une valeur dans l'intervalle $[0; \pi]$.

2°) Pour les sinus



La calculatrice donne une valeur dans l'intervalle $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.

1^{ère} S Exercices sur les équations et inéquations trigonométriques

1 Résoudre dans \mathbb{R} l'équation $\cos\left(2x - \frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$.

2 Résoudre dans \mathbb{R} l'équation $\sin 3x = \frac{1}{2}$.

3 Résoudre dans \mathbb{R} l'équation $\sin 5x + \sin x = 0$.

4 Résoudre dans \mathbb{R} l'équation $2\cos^2 x + 7\cos x + 3 = 0$.

5 Résoudre dans \mathbb{R} l'équation $\sqrt{3} \cos x + \sin 2x = 0$.

6 Résoudre dans \mathbb{R} l'équation $\frac{1}{2} \cos x - \frac{\sqrt{3}}{2} \sin x = 1$.

7 Résoudre dans $[0; 2\pi]$ l'inéquation $\cos x < \frac{\sqrt{3}}{2}$.

8 Résoudre dans $[-\pi; \pi]$ l'inéquation $\sin x \ge -\frac{\sqrt{2}}{2}$.

9 Résoudre dans $\left[-\pi ; \pi\right]$ l'inéquation $\cos^2 x < \frac{1}{4}$.

Réponses

$$\boxed{1} S = \left\{ \frac{\pi}{4} + k\pi, k \in \mathbb{Z} \right\} \cup \left\{ \frac{\pi}{12} + k'\pi, k' \in \mathbb{Z} \right\}$$

2
$$S = \left\{ \frac{\pi}{18} + \frac{2k\pi}{3}, k \in \mathbb{Z} \right\} \cup \left\{ \frac{5\pi}{18} + \frac{2k'\pi}{3}, k' \in \mathbb{Z} \right\}$$

3 Astuce: l'équation est équivalente $\sin 5x = -\sin x$ soit $\sin 5x = \sin (-x)$

$$S = \left\{ \frac{k\pi}{3}, k \in \mathbb{Z} \right\} \cup \left\{ \frac{\pi}{4} + k' \frac{\pi}{2}, k' \in \mathbb{Z} \right\}$$

4 Astuce : on effectue le changement d'inconnue $X = \cos x$.

$$S = \left\{ \frac{2\pi}{3} + 2k\pi, \, k \in \mathbb{Z} \right\} \cup \left\{ -\frac{2\pi}{3} + 2k'\pi, \, k' \in \mathbb{Z} \right\}$$

5 Astuce: utiliser la formule de duplication $\sin 2x = 2\sin x \times \cos x$ puis factoriser le 1^{er} membre.

$$S = \left\{ \frac{\pi}{2} + k\pi, \, k \in \mathbb{Z} \right\} \cup \left\{ -\frac{\pi}{3} + 2k'\pi, \, k' \in \mathbb{Z} \right\} \cup \left\{ \frac{4\pi}{3} + 2k''\pi, \, k'' \in \mathbb{Z} \right\}$$

6 Astuce : réduire le 1^{er} membre en utilisant une formule d'addition.

$$S = \left\{ -\frac{\pi}{3} + 2k\pi, \, k \in \mathbb{Z} \right\}$$

7 Méthode : utiliser le cercle trigonométrique.

$$S = \left] \frac{\pi}{6} ; \frac{11\pi}{6} \right[$$

8 Méthode : utiliser le cercle trigonométrique.

$$S = \left[-\pi \; ; \; -\frac{3\pi}{4} \right] \cup \left[-\frac{\pi}{4} \; ; \; \pi \right]$$

$$\boxed{9} \ S = \boxed{\frac{\pi}{3}} \ ; \ \frac{2\pi}{3} \left[\ \cup \] - \frac{2\pi}{3} \ ; -\frac{\pi}{3} \left[\ \cup \] \right]$$