TS3

Contrôle du mardi 17 novembre 2009 (4 heures)

Prénom: Nom:

- Sur la première copie, doivent figurer le nom, le prénom, la classe, la date, l'intitulé exact sans abréviations ainsi qu'un cartouche de présentation avec le numéro des exercices.
- Les exercices doivent être traités dans l'ordre, sans renvoi sur d'autres feuilles, avec les numéros des exercices et des questions correctement indiqués.
- La rédaction doit être concise et claire, sans ratures ni abréviations. Les calculs doivent être bien présentés (en particulier, traits de fractions à la règle). Les réponses et des résultats doivent être bien mis en évidence (en les encadrant en rouge).

I. (4 points) On considère la fonction $f: x \mapsto \frac{x^3 + x^2 - 4}{x^2 - 4}$ et l'on note \mathcal{C} sa courbe représentative dans le plan muni d'un repère $(0, \vec{i}, \vec{j})$.

Pour cet exercice, on pourra s'inspirer de l'aide à la rédaction et aux calculs fournie à la fin de l'énoncé.

1°) Déterminer quatre constantes a, b, c, d telles que pour tout réel $x \in \mathbb{R} \setminus \{-2, 2\}$, on ait :

$$f(x) = ax + b + \frac{cx + d}{x^2 - 4}.$$

- 2°) En déduire que \mathcal{L} admet une asymptote oblique Δ dont on précisera une équation.
- 3°) Déterminer l'abscisse du point d'intersection A de $\operatorname{\mathcal{L}}$ et Δ .

II. (1 point) On considère la fonction $f: x \mapsto \frac{(x+1)^2(x^2+8)}{x^2}$ et l'on note \mathcal{C} sa courbe représentative dans le plan muni d'un repère $(0, \vec{i}, \vec{j})$.

Démontrer que \mathcal{C} admet une parabole asymptote Γ dont on précisera une équation. Déterminer les coordonnées du sommet S de Γ .

III. (5 points) On considère la fonction $f: x \mapsto x+1+\frac{4}{e^x+1}$.

- 1°) Démontrer que, pour tout réel x, on a : $f'(x) = \left(\frac{e^x 1}{e^x + 1}\right)^2$.
- 2°) Dresser le tableau de variation de f avec les limites (on ne détaillera pas le calcul des limites).
- 3°) Calculer f''(x). Donner le résultat sous forme factorisée.
- 4°) On note ${\cal C}$ la courbe représentative de f dans le plan muni d'un repère $\left(\mathbf{O},\,\vec{i},\,\vec{j}\right)$

Déterminer l'(les) abscisse(s) du (des) point(s) de **C**en lequel (lesquels) la tangente a pour coefficient directeur

 $\frac{1}{4}$.

5°) a) Démontrer en rédigeant soigneusement que l'équation f(x) = 0 (E) admet une unique solution α dans \mathbb{R} .

À l'aide de la calculatrice, déterminer un encadrement de α d'amplitude 10^{-4} .

b) Dans cette question, toute trace de recherche même non fructueuse sera prise en compte.

Démontrer que l'on a : $f'(\alpha) = \left(\frac{\alpha+3}{2}\right)^2$.

6°) Démontrer que pour tout réel x, on a : $0 \le f'(x) < 1$.

IV. (4 points) Les deux parties sont indépendantes.

Pour chaque tableau, cocher les réponses sans justifier. Aucun point n'est retiré en cas de réponse incorrecte.

Partie A

On considère la suite (u_n) définie par son premier terme $u_0 = \frac{3}{2}$ et la relation de récurrence $u_{n+1} = \frac{2}{3 - u_n}$.

Pour tout entier naturel n, on pose $v_n = \frac{u_n - 2}{u_n - 1}$ (on admettra que, pour tout entier naturel n, on a $u_n \neq 1$).

1	La suite (u_n) est géométrique.	V	F
2	La suite (v_n) est géométrique.	V	F
3	Pour tout entier naturel <i>n</i> , on a : $u_n = 1 + \frac{1}{1 + 2^n}$.	V	F
4	Pour tout entier naturel n , on a : $1 < u_n \le \frac{3}{2}$.	V	F

Partie B

On considère la suite (u_n) définie sur $\mathbb N$ par son premier terme $u_0=0$ et la relation de récurrence $u_{n+1}=\frac{1}{2-u}$.

Pour tout entier naturel n, on pose $v_n = \frac{1}{1 - u_n}$ (on admettra que, pour tout entier naturel n, on a $u_n \ne 1$).

1	La suite (u_n) est arithmétique.	V	F
2	La suite (v_n) est arithmétique.	V	F
3	Pour tout entier naturel n , on a : $u_n = \frac{n}{n+1}$.	V	F
4	Pour tout entier naturel n , on a : $0 \le u_n < 1$.	V	F

V. (3 points) QCM

Soit (u_n) une suite définie sur N. On considère la suite (v_n) définie pour tout entier naturel n par $v_n = e^{-u_n} + 1$.

Pour chacune des questions, quatre propositions sont faites dont une seule est exacte. Pour chaque question, donner sans justification une réponse.

Une bonne réponse rapporte 1 point, une réponse fausse enlève 0,5 point.

1°) Soit a est un réel strictement positif. Si $u_0 = \ln a$, alors :

a.
$$v_0 = \frac{1}{a} + 1$$
 b. $v_0 = \frac{1}{1+a}$ c. $v_0 = -a + 1$ d. $v_0 = e^{-a} + 1$

b.
$$v_0 = \frac{1}{1+a}$$

c.
$$v_0 = -a + 1$$

d.
$$v_0 = e^{-a} + 1$$

 2°) Si (u_n) est strictement croissante, alors :

- a. (v_n) est strictement décroissante et majorée par 2 c. (v_n) est strictement croissante et majorée par 2
- d. (v_n) est strictement décroissante et minorée par 1 b. (v_n) est strictement croissante et minorée par 1

 3°) Si (u_{\perp}) est majorée par 2, alors :

- a. (v_n) est majorée par $1+e^{-2}$
- c. (v_n) est majorée par $1+e^2$
- b. (v_n) est minorée par $1+e^{-2}$
- d. (v_n) est minorée par $1+e^2$

Question	1 °	2 °	3 °	Total
Réponse				

VI. (3 points) Soit (u_n) la suite définie sur \mathbb{N} par son premier terme $u_n = 1$ et la relation de récurrence $u_{n+1} = u_n + 2n + 3$.

- 1°) Étudier le sens de variation de la suite (u_n) .
- 2°) Conjecturer une expression de u_{n} en fonction de n. On rédigera ainsi :
- « On peut conjecturer que, pour tout entier naturel n, on a : $u_n = \dots$ ».
- 3°) Le but de cette question est de valider la conjecture émise dans la question précédente.
- a) Démontrer que la suite (v_n) définie sur \mathbb{N} par $v_n = u_n n^2$ est arithmétique.
- b) Utiliser ce résultat pour exprimer u_n en fonction de n.
- c) Donner la valeur de u_{2009} .

Bonus au choix

1^{er} **choix**: On considère la fonction f définie par $f(x) = e^x + x(\ln x - 1 - e)$.

Déterminer le (les) extremum(s) de f sur son ensemble de définition. Détailler la démarche.

 2^{e} choix: Déterminer les extremums locaux de la fonction f définie dans l'exercice II. Détailler la démarche.

Annexe

Aide à la rédaction pour les asymptotes ou courbes asymptotes (phrase-type)

« La courbe (E) admet la droite D d'équation $y = \dots$ pour asymptote horizontale en $+ \infty$ (ou en $- \infty$). » « La courbe \mathcal{L} admet la courbe Γ d'équation $y = \dots$ pour courbe asymptote en $+ \infty$ (ou en $- \infty$). »

Aide à la présentation des calculs pour la méthode des coefficients indéterminés

On considère la fonction $f: x \mapsto \frac{x^2 + 2x - 1}{x + 3}$.

Déterminer trois réels a, b, c tels que pour tout $x \in \mathbb{R} \setminus \{-3\}$, on ait $f(x) = ax + b + \frac{c}{x+3}$.

Solution rédigée :

On pose
$$g(x) = ax + b + \frac{c}{x+3}$$
.

Pour tout
$$x \in \mathbb{R} \setminus \{-3\}$$
 $g(x) = \frac{(ax+b)(x+3)+c}{x+3}$

$$= \frac{ax^2 + 3ax + bx + 3b + c}{x+3}$$

$$= \frac{ax^2 + (3a+b)x + 3b + c}{x+3}$$

Or pour tout
$$x \in \mathbb{R} \setminus \{-3\}$$
 $f(x) = \frac{x^2 + 2x - 1}{x + 3}$.

On identifie les coefficients des numérateurs.

On obtient le système :
$$\begin{cases} a = 1 \\ 3a + b = 2 \\ 3b + c = -1 \end{cases}$$

On trouve:
$$\begin{cases} a=1 \\ b=-1 \\ c=2 \end{cases}$$

Pour tout
$$x \in \mathbb{R} \setminus \{-3\}$$
 $f(x) = x - 1 + \frac{2}{x + 3}$

Corrigé du contrôle du 17-11-2009

$$f: x \mapsto \frac{x^3 + x^2 - 4}{x^2 - 4}$$

1°)

En suivant la méthode donnée en annexe de l'énoncé, on trouve assez rapidement : a=1, b=1, c=4, d=0. Donc pour tout $x \in \mathbb{R} \setminus \{-2; 2\}$, on a : $f(x) = x+1+\frac{4x}{x^2-4}$.

Remarque:

On aurait aussi pu faire une division euclidienne de polynôme (hors-programme) pour trouver le même résultat.

2°)

$$\lim_{x \to +\infty} \left[f(x) - (x+1) \right] = \lim_{x \to +\infty} \frac{4x}{x^2 - 4} = \lim_{x \to +\infty} \frac{4}{x} = 0 \quad \text{(on utilise la limite d'une fonction rationnelle en } + \infty \text{ et } -\infty)$$

$$\lim_{x \to +\infty} \left[f(x) - (x+1) \right] = \lim_{x \to +\infty} \frac{4x}{x^2 - 4} = \lim_{x \to +\infty} \frac{4}{x} = 0$$

Donc la courbe \mathcal{L} admet la droite Δ d'équation y = x + 1 pour asymptote oblique en $+\infty$ et en $-\infty$.

3°) Déterminons l'abscisse du point d'intersection A de \mathcal{L} et Δ .

On résout l'équation f(x) = x+1 (1).

(1)
$$\Leftrightarrow x+1+\frac{4x}{x^2-4} = x+1$$

 $\Leftrightarrow \frac{x}{x^2-4} = 0$
 $\Leftrightarrow x = 0$

Le point d'intersection A de \mathcal{C} et Δ a pour abscisse 0.

II.
$$f: x \mapsto \frac{x^3 + x^2 - 4}{x^2 - 4} \frac{(x+1)^2 (x^2 + 8)}{x^2}$$

$$\forall x \in \mathbb{R}^* \quad f(x) = \frac{x^4 + 2x^3 + 9x^2 + 16x + 8}{x^2} = x^2 + 2x + 9 + \frac{16}{x} + \frac{8}{x^2}$$

$$\lim_{x \to +\infty} \left[f(x) - (x^2 + 2x + 9) \right] = \lim_{x \to +\infty} \left(\frac{16}{x} + \frac{8}{x^2} \right) = 0$$

$$\lim_{x \to -\infty} \left[f(x) - (x^2 + 2x + 9) \right] = \lim_{x \to -\infty} \left(\frac{16}{x} + \frac{8}{x^2} \right) = 0$$

On en déduit que \mathcal{L} admet la parabole Γ d'équation $y = x^2 + 2x + 9$ pour parabole asymptote $+\infty$ et en $-\infty$. Le sommet S de Γ a pour coordonnées (-1; 8).

Rappel:

La parabole d'équation
$$y = ax^2 + bx + c$$
 $(a \ne 0)$ est une **parabole** de **sommet** $S = \begin{bmatrix} -\frac{b}{2a} \\ f(-\frac{b}{2a}) \end{bmatrix}$.

Une question non demandée dans le contrôle aurait été de déterminer la position de \mathcal{L} par rapport à Γ .

III.

$$1^{\circ}) \ \forall x \in \mathbb{R} \quad f'(x) = 1 - \frac{4e^{x}}{\left(e^{x} + 1\right)^{2}} = \frac{\left(e^{x} + 1\right)^{2} - 4e^{x}}{\left(e^{x} + 1\right)^{2}} = \frac{e^{2x} + 2e^{x} + 1 - 4e^{x}}{\left(e^{x} + 1\right)^{2}} = \frac{e^{2x} - 2e^{x} + 1}{\left(e^{x} + 1\right)^{2}} = \frac{\left(e^{x} - 1\right)^{2}}{\left(e^{x} + 1\right)^{2}} = \left(\frac{e^{x} - 1}{e^{x} + 1}\right)^{2}$$

2°) La dérivée de f est strictement positive sur \mathbb{R}^* et s'annule en 0.

Donc f est strictement croissante sur \mathbb{R} .

Rappel du théorème sur le sens de variation (chapitre sur la dérivation des fonctions) :

On considère une fonction u dérivable sur un intervalle I.

Si la dérivée de u est positive ou nulle sauf en des réels isolés de I où elle s'annule, alors u est strictement croissante sur I.

x	$-\infty$		0	+ ∞
Signe de $f'(x)$		+	0	+
Variations de f				→ +∞

3°) Pour calculer la dérivée seconde de f, on observe que la dérivée première de f est de la forme u^2 .

On pose
$$u(x) = \frac{e^x - 1}{e^x + 1}$$
.

$$\forall x \in \mathbb{R} \quad u'(x) = \frac{2e^x}{\left(e^x + 1\right)^2}$$

On applique la formule :

$$\forall x \in \mathbb{R}$$
 $f''(x) = 2 \times \frac{2e^x}{(e^x + 1)^2} \times \frac{e^x - 1}{e^x + 1} = \frac{4e^x(e^x - 1)}{(e^x + 1)^3}$

4°) Pour déterminer l'(les) abscisse(s) du (des) point(s) de \mathcal{L} en lequel (lesquels) la tangente a pour coefficient directeur $\frac{1}{4}$, on doit résoudre l'équation $f'(x) = \frac{1}{4}$ (1).

$$(1) \Leftrightarrow \left(\frac{e^x - 1}{e^x + 1}\right)^2 = \frac{1}{4}$$

$$\Leftrightarrow \frac{e^x - 1}{e^x + 1} = \frac{1}{2} \text{ ou } \frac{e^x - 1}{e^x + 1} = -\frac{1}{2}$$

$$\Leftrightarrow 2(e^x - 1) = e^x + 1 \text{ ou } 2(e^x - 1) = -(e^x + 1)$$

$$\Leftrightarrow e^x = 3 \text{ ou } 3e^x = 1$$

$$\Leftrightarrow x = \ln 3 \text{ ou } x = -\ln 3$$

Conclusion : \mathcal{L} admet une tangente de coefficient directeur $\frac{1}{4}$ aux points d'abscisse ln 3 et – ln 3.

5°) a) f est continue et strictement croissante sur \mathbb{R} .

Le corollaire du théorème des valeurs intermédiaires s'applique.

 $f(\mathbb{R}) = \mathbb{R}$.

L'équation (E) admet une unique solution α dans \mathbb{R} .

La calculatrice permet d'écrire : $\alpha = -97248...$

Donc on peut écrire : $-4,9725 < \alpha < -4,9724$

$b) \ \textbf{Question assez difficile et technique:} \\$

On part du fait que α est solution de l'équation (E) donc $\alpha+1+\frac{4}{e^{\alpha}+1}=0$ d'où $-\frac{2}{e^{\alpha}+1}=\frac{\alpha+1}{2}$.

On observe ensuite que $\forall x \in \mathbb{R}$ $f'(x) = \left(\frac{e^x - 1}{e^x + 1}\right)^2 = \left(\frac{e^x + 1 - 2}{e^x + 1}\right)^2 = \left(1 - \frac{2}{e^x + 1}\right)^2$.

Donc on peut écrire que $f'(\alpha) = \left(1 - \frac{2}{e^{\alpha} + 1}\right)^2 = \left(1 + \frac{\alpha + 1}{2}\right)^2 = \left(\frac{\alpha + 3}{2}\right)^2$.

6°) Démontrons que pour tout réel x, on a : $0 \le f'(x) < 1$.

De manière évidente, on a : $f'(x) \ge 0$.

On va démontrer que $\forall x \in \mathbb{R}$ f'(x) < 1.

$$\forall x \in \mathbb{R} \quad f'(x) - 1 = \left(\frac{e^x - 1}{e^x + 1}\right)^2 - 1 = \left[\left(\frac{e^x - 1}{e^x + 1}\right) - 1\right] \left[\left(\frac{e^x - 1}{e^x + 1}\right) + 1\right] = \left(-\frac{2}{e^x + 1}\right) \times \frac{2e^x}{e^x + 1} = -\frac{4e^x}{\left(e^x + 1\right)^2}.$$

On voit clairement que $\forall x \in \mathbb{R}$ f'(x)-1<0.

Donc $\forall x \in \mathbb{R}$ f'(x) < 1.

On a donc $\forall x \in \mathbb{R} \ 0 \le f'(x) < 1$.

Question supplémentaire (bonus que je n'ai pas mis)

Démontrer que \mathcal{L} admet le point $\Omega(0;3)$ pour centre de symétrie.

Ou

Démontrer que la courbe $\mathcal C$ admet un centre de symétrie.

Complément : On a trouvé f'(x) < 1 et $f'(\alpha) = \left(\frac{\alpha + 3}{2}\right)^2$.

On obtient alors :
$$\left(\frac{\alpha+3}{2}\right)^2 < 1$$
 d'où : $-1 < \frac{\alpha+3}{2} < 1$ soit $-5 < \alpha < -1$.

Ainsi, sans calculatrice, on obtient un encadrement de α.

IV.

Partie A

$$F - V - V - V$$

1. Faux

On a:
$$u_0 = \frac{3}{2}$$
; $u_1 = \frac{4}{3}$; $u_2 = 6$.

On a : $\frac{u_1}{u_0} \neq \frac{u_2}{u_1}$ donc la suite (u_n) n'est pas géométrique.

2. Vrai

$$\forall n \in \mathbb{N} \quad v_{n+1} = \frac{u_{n+1} - 2}{u_{n+1} - 1} = \frac{\frac{-2}{u_n - 3} - 2}{\frac{-2}{u_n - 3} - 1} = \frac{-2 - 2u_n + 6}{-2 - u_n + 3} = \frac{2u_n - 4}{u_n - 1} = 2v_n$$

La relation obtenue permet d'affirmer que la suite (v_n) est géométrique.

Pour la question suivante, on calcule son premier terme $v_0 = \frac{u_0 - 2}{u_0 - 1} = -1$.

3. Vrai

D'après le résultat de la question précédente, $\forall n \in \mathbb{N}$ $v_n = -2^n$.

Or
$$v_n = \frac{u_n - 2}{u_n - 1}$$
 par définition.

Par produit en croix, on obtient $v_n u_n - v_n = u_n - 2$ ce qui donne $u_n (v_n - 1) = v_n - 2$ soit $u_n = \frac{v_n - 2}{v_n - 1}$.

On a donc
$$\forall n \in \mathbb{N}$$
 $u_n = \frac{2^n + 2}{2^n + 1}$

Il faut transformer pour obtenir le résultat demandé : $u_n = \frac{2^n + 1 + 1}{2^n + 1} = \frac{2^n + 1}{2^n + 1} + \frac{1}{2^n + 1} = 1 + \frac{1}{2^n + 1}$

4. Vrai

Partie B

$$F - V - V - V$$

1. Faux

$$u_0 = 0 \; ; \; u_1 = \frac{1}{2} \; ; \; u_2 = \frac{2}{3}$$

On a : $u_1 - u_0 \neq u_2 - u_1$ donc la suite (u_n) n'est pas arithmétique.

2. Vrai

$$\forall n \in \mathbb{N} \quad v_{n+1} = \frac{1}{1 - u_{n+1}} = \frac{1}{1 - \frac{1}{2 - u_{n}}} = \frac{2 - u_{n}}{1 - u_{n}} = \frac{1 - u_{n} + 1}{1 - u_{n}} = 1 + \frac{1}{1 - u_{n}} = 1 + v_{n} \; ; \; v_{0} = \frac{1}{1 - u_{0}} = 1 \; .$$

La suite (v_n) est arithmétique de raison 1 et de premier terme $v_0 = 1$.

3. Vrai

$$\forall n \in \mathbb{N}$$
 $v_n = v_0 + n \times 1 = 1 + n$

$$\forall n \in \mathbb{N} \quad v_n = \frac{1}{1 - u_n} \text{ donc } \forall n \in \mathbb{N} \quad \frac{1}{v_n} = 1 - u_n$$

Donc
$$\forall n \in \mathbb{N} \ u_n = 1 - \frac{1}{v_n} = 1 - \frac{1}{n+1} = \frac{n}{n+1}$$
.

4. Vrai

V. QCM

Question	1 °	2 °	3°
Réponse	a	d	b

Justification des résultats

1°) On sait que $u_0 = \ln a$ donc $v_0 = e^{-\ln a} + 1 = e^{\ln \frac{1}{a}} + 1 = \frac{1}{a} + 1$.

2°) Pour tout $n \in \mathbb{N}$, on a : $u \le u_{n+1}$ donc pour tout $n \in \mathbb{N}$, on a : $-u_n \ge -u_{n+1}$ d'où pour tout $n \in \mathbb{N}$, on a : $e^{-u_n} \ge e^{-u_{n+1}}$ donc pour tout $n \in \mathbb{N}$, on a : $1 + e^{-u_n} \ge 1 + e^{-u_{n+1}}$.

Pour tout $n \in \mathbb{N}$, on a: $v_n \geqslant v_{n+1}$.

On en déduit que (v_n) est strictement décroissante.

Pour tout $n \in \mathbb{N}$, on a: $e^{-u_n} > 0$ d'où pour tout $n \in \mathbb{N}$, on a: $e^{-u_n} + 1 > 1$ donc pour tout $n \in \mathbb{N}$, on a: $v_n > 1$.

On en déduit que (v_n) est minorée par 1.

3°) Pour tout $n \in \mathbb{N}$, on a : $u_n \le 2$ d'où pour tout $n \in \mathbb{N}$, on a : $-u_n \ge -2$.

D'où pour tout $n \in \mathbb{N}$, on $e^{-u_n} \ge e^{-2}$ donc pour tout $n \in \mathbb{N}$, on $a : 1 + e^{-u_n} \ge 1 + e^{-2}$.

Pour tout $n \in \mathbb{N}$, on a: $v_n \ge 1 + e^{-2}$.

On en déduit que (v_n) est minorée par $1+e^{-2}$.

VI.

 (u_n) est la suite définie sur \mathbb{N} par son premier terme $u_0 = 1$ et la relation de récurrence $u_{n+1} = u_n + 2n + 3$.

1°) Étudions le sens de variation de la suite (u_n) .

$$\forall n \in \mathbb{N} \quad u_{n+1} - u_n = 2n + 3$$

Or $\forall n \in \mathbb{N} \quad 2n+3>0$.

Donc $\forall n \in \mathbb{N}$ $u_{n+1} - u_n > 0$ et par conséquent, la suite (u_n) est strictement croissante à partir de l'indice 0.

2°) $u_0 = 1$, $u_1 = 4$, $u_2 = 9$, $u_3 = 16$, $u_4 = 25$, $u_5 = 26$ etc.

On peut conjecturer que, pour tout entier naturel n, on a : $u_n = (n+1)^2$.

3°)

a) Démontrons que la suite (v_n) définie sur \mathbb{N} par $v_n = u_n - n^2$ est arithmétique.

$$\forall n \in \mathbb{N}$$
 $v_{n+1} - v_n = u_{n+1} - (n+1)^2 - u_n + n^2 = v_n + 2n + 3 - n^2 - 2n - 1 - v_n + n^2 = 2$

On en déduit que la suite (v_n) est arithmétique de raison 2 et de premier terme $v_0 = 1$.

b) Exprimons u_n en fonction de n.

$$\forall n \in \mathbb{N} \quad v_n = 1 + 2n$$

Or
$$\forall n \in \mathbb{N}$$
 $v_n = u_n - n^2$

On en déduit que $\forall n \in \mathbb{N}$ $u_n = v_n + n^2$ d'où $u_n = n^2 + 2n + 1 = (n+1)^2$.

La conjecture est ainsi démontrée.

c) Calculons u_{2000} .

$$u_{2009} = (2010)^2 = 4040100$$